6 resultados para rag1

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rearrangement of antibody and T-cell receptor gene segments is indispensable to the vertebrate immune response. All extant jawed vertebrates can rearrange these gene segments. This ability is conferred by the recombination activating genes I and II (RAG I and RAG II). To elucidate their origin and function, the cDNA encoding RAG I from a member of the most ancient class of extant gnathostomes, the Carcharhine sharks, was characterized. Homology domains identified within shark RAG I prompted sequence comparison analyses that suggested similarity of the RAG I and II genes, respectively, to the integrase family genes and integration host factor genes of the bacterial site-specific recombination system. Thus, the apparent explosive evolution (or "big bang") of the ancestral immune system may have been initiated by a transfer of microbial site-specific recombinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RAG1 protein is essential for the activation of V(D)J recombination in developing lymphocytes (V, variable; D, diversity; J, joining). However, it has not been determined whether its role involves substrate recognition and catalysis. A single amino acid substitution mutation in the RAG1 gene has now been identified that renders its activity sensitive to the sequence of the coding region abutting the heptamer site in the recombination signal sequence. These results strongly imply that RAG1 interacts directly with DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developmental commitment involves activation of lineage-specific genes, stabilization of a lineage-specific gene expression program, and permanent inhibition of inappropriate characteristics. To determine how these processes are coordinated in early T cell development, the expression of T and B lineage-specific genes was assessed in staged subsets of immature thymocytes. T lineage characteristics are acquired sequentially, with germ-line T cell antigen receptor-β transcripts detected very early, followed by CD3ɛ and terminal deoxynucleotidyl transferase, then pTα, and finally RAG1. Only RAG1 expression coincides with commitment. Thus, much T lineage gene expression precedes commitment and does not depend on it. Early in the course of commitment to the T lineage, thymocytes lose the ability to develop into B cells. To understand how this occurs, we also examined expression of well defined B lineage-specific genes. Although λ5 and Ig-α are not expressed, the μ0 and Iμ transcripts from the unrearranged IgH locus are expressed early, in distinct patterns, then repressed just before RAG1 expression. By contrast, RNA encoding the B cell receptor component Ig-β was found to be transcribed in all immature thymocyte subpopulations and throughout most thymocyte differentiation. Ig-β expression is down-regulated only during positive selection of CD4+CD8– cells. Thus several key participants in the B cell developmental program are expressed in non-B lineage-committed cells, and one is maintained even through commitment to an alternative lineage, and repressed only after extensive T lineage differentiation. The results show that transcriptional activation of “lymphocyte-specific” genes can occur in uncommitted precursors, and that T lineage commitment is a composite of distinct positive and negative regulatory events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have generated RANK (receptor activator of NF-κB) nullizygous mice to determine the molecular genetic interactions between osteoprotegerin, osteoprotegerin ligand, and RANK during bone resorption and remodeling processes. RANK−/− mice lack osteoclasts and have a profound defect in bone resorption and remodeling and in the development of the cartilaginous growth plates of endochondral bone. The osteopetrosis observed in these mice can be reversed by transplantation of bone marrow from rag1−/− (recombinase activating gene 1) mice, indicating that RANK−/− mice have an intrinsic defect in osteoclast function. Calciotropic hormones and proresorptive cytokines that are known to induce bone resorption in mice and human were administered to RANK−/− mice without inducing hypercalcemia, although tumor necrosis factor α treatment leads to the rare appearance of osteoclast-like cells near the site of injection. Osteoclastogenesis can be initiated in RANK−/− mice by transfer of the RANK cDNA back into hematopoietic precursors, suggesting a means to critically evaluate RANK structural features required for bone resorption. Together these data indicate that RANK is the intrinsic cell surface determinant that mediates osteoprotegerin ligand effects on bone resorption and remodeling as well as the physiological and pathological effects of calciotropic hormones and proresorptive cytokines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

V(D)J recombination is the process that generates the diversity among T cell receptors and is one of three mechanisms that contribute to the diversity of antibodies in the vertebrate immune system. The mechanism requires precise cutting of the DNA at segment boundaries followed by rejoining of particular pairs of the resulting termini. The imprecision of aspects of the joining reaction contributes significantly to increasing the variability of the resulting functional genes. Signal sequences target DNA recombination and must participate in a highly ordered protein–DNA complex in order to limit recombination to appropriate partners. Two proteins, RAG1 and RAG2, together form the nuclease that cleaves the DNA at the border of the signal sequences. Additional roles of these proteins in organizing the reaction complex for subsequent steps are explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allelic exclusion at the T-cell receptor alpha chain locus is incomplete resulting in the generation of T cells that express two T-cell receptors. The potential involvement of such T cells in autoimmunity has been suggested [Padovan, E., Casorati, G., Dellabona, P., Meyer, S., Brockhaus, M. & Lanzavecchia, A. (1993) Science 262, 422-424; Heath, W. R. & Miller, J. F. A. P. (1993) J. Exp. Med. 178, 1807-1811]. Here we show that expression of a second T-cell receptor can rescue T cells with autospecific receptors from thymic deletion and allow their exit into the periphery. Dual receptor T cells, created by constitutive expression of two transgenic T-cell receptors on a Rag1-/- background, are tolerant to self by maintaining low levels of autospecific receptor, but selfreactive effector function (killing) can be induced through activation via the second receptor. This opens the possibility that T cells carrying two receptors in the periphery of normal individuals contain putatively autoreactive cells that could engage in autoimmune effector functions after recognition of an unrelated environmental antigen.