14 resultados para radiation absorption analysis

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microarrays can measure the expression of thousands of genes to identify changes in expression between different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. We describe a method, Significance Analysis of Microarrays (SAM), that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements to estimate the percentage of genes identified by chance, the false discovery rate (FDR). When the transcriptional response of human cells to ionizing radiation was measured by microarrays, SAM identified 34 genes that changed at least 1.5-fold with an estimated FDR of 12%, compared with FDRs of 60 and 84% by using conventional methods of analysis. Of the 34 genes, 19 were involved in cell cycle regulation and 3 in apoptosis. Surprisingly, four nucleotide excision repair genes were induced, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing ICAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent endogenous activator of the cell death pathway and functions by activating the cell surface death receptors 4 and 5 (DR4 and DR5). TRAIL is nontoxic in vivo and preferentially kills neoplastically transformed cells over normal cells by an undefined mechanism. Radiotherapy is a common treatment for breast cancer as well as many other cancers. Here we demonstrate that ionizing radiation can sensitize breast carcinoma cells to TRAIL-induced apoptosis. This synergistic effect is p53-dependent and may be the result of radiation-induced up-regulation of the TRAIL-receptor DR5. Importantly, TRAIL and ionizing radiation have a synergistic effect in the regression of established breast cancer xenografts. Changes in tumor cellularity and extracellular space were monitored in vivo by diffusion-weighted magnetic resonance imaging (diffusion MRI), a noninvasive technique to produce quantitative images of the apparent mobility of water within a tissue. Increased water mobility was observed in combined TRAIL- and radiation-treated tumors but not in tumors treated with TRAIL or radiation alone. Histological analysis confirmed the loss of cellularity and increased numbers of apoptotic cells in TRAIL- and radiation-treated tumors. Taken together, our results provide support for combining radiation with TRAIL to improve tumor eradication and suggest that efficacy of apoptosis-inducing cancer therapies may be monitored noninvasively, using diffusion MRI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insects in the order Plecoptera (stoneflies) use a form of two-dimensional aerodynamic locomotion called surface skimming to move across water surfaces. Because their weight is supported by water, skimmers can achieve effective aerodynamic locomotion even with small wings and weak flight muscles. These mechanical features stimulated the hypothesis that surface skimming may have been an intermediate stage in the evolution of insect flight, which has perhaps been retained in certain modern stoneflies. Here we present a phylogeny of Plecoptera based on nucleotide sequence data from the small subunit rRNA (18S) gene. By mapping locomotor behavior and wing structural data onto the phylogeny, we distinguish between the competing hypotheses that skimming is a retained ancestral trait or, alternatively, a relatively recent loss of flight. Our results show that basal stoneflies are surface skimmers, and that various forms of surface skimming are distributed widely across the plecopteran phylogeny. Stonefly wings show evolutionary trends in the number of cross veins and the thickness of the cuticle of the longitudinal veins that are consistent with elaboration and diversification of flight-related traits. These data support the hypothesis that the first stoneflies were surface skimmers, and that wing structures important for aerial flight have become elaborated and more diverse during the radiation of modern stoneflies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested that ionizing radiation causes irreparable DNA double-strand breaks in mice and cell lines harboring mutations in any of the three subunits of DNA-dependent protein kinase (DNA-PK) (the catalytic subunit, DNA-PKcs, or one of the DNA-binding subunits, Ku70 or Ku86). In actuality, these mutants vary in their ability to resolve double-strand breaks generated during variable (diversity) joining [V(D)J] recombination. Mutant cell lines and mice with targeted deletions in Ku70 or Ku86 are severely compromised in their ability to form coding and signal joints, the products of V(D)J recombination. It is noteworthy, however, that severe combined immunodeficient (SCID) mice, which bear a nonnull mutation in DNA-PKcs, are substantially less impaired in forming signal joints than coding joints. The current view holds that the defective protein encoded by the murine SCID allele retains enough residual function to support signal joint formation. An alternative hypothesis proposes that DNA-PKcs and Ku perform different roles in V(D)J recombination, with DNA-PKcs required only for coding joint formation. To resolve this issue, we examined V(D)J recombination in DNA-PKcs-deficient (SLIP) mice. We found that the effects of this mutation on coding and signal joint formation are identical to the effects of the SCID mutation. Signal joints are formed at levels 10-fold lower than in wild type, and one-half of these joints are aberrant. These data are incompatible with the notion that signal joint formation in SCID mice results from residual DNA-PKcs function, and suggest a third possibility: that DNA-PKcs normally plays an important but nonessential role in signal joint formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two cellular retinol-binding proteins (CRBP I and II) with distinct tissue distributions and retinoid-binding properties have been recognized thus far in mammals. Here, we report the identification of a human retinol-binding protein resembling type I (55.6% identity) and type II (49.6% identity) CRBPs, but with a unique H residue in the retinoid-binding site and a distinctively different tissue distribution. Additionally, this binding protein (CRBP III) exhibits a remarkable sequence identity (62.2%) with the recently identified ι-crystallin/CRBP of the diurnal gecko Lygodactylus picturatus [Werten, P. J. L., Röll, B., van Alten, D. M. F. & de Jong, W. W. (2000) Proc. Natl. Acad. Sci. USA 97, 3282–3287 (First Published March 21, 2000; 10.1073/pnas.050500597)]. CRBP III and all-trans-retinol form a complex (Kd ≈ 60 nM), the absorption spectrum of which is characterized by the peculiar fine structure typical of the spectra of holo-CRBP I and II. As revealed by a 2.3-Å x-ray molecular model of apo-CRBP III, the amino acid residues that line the retinol-binding site in CRBP I and II are positioned nearly identically in the structure of CRBP III. At variance with the human CRBP I and II mRNAs, which are most abundant in ovary and intestine, respectively, the CRBP III mRNA is expressed at the highest levels in kidney and liver thus suggesting a prominent role for human CRBP III as an intracellular mediator of retinol metabolism in these tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral changes in the photocycle of the photoactive yellow protein (PYP) are investigated by using ab initio multiconfigurational second-order perturbation theory at the available structures experimentally determined. Using the dark ground-state crystal structure [Genick, U. K., Soltis, S. M., Kuhn, P., Canestrelli, I. L. & Getzoff, E. D. (1998) Nature (London) 392, 206–209], the ππ* transition to the lowest excited state is related to the typical blue-light absorption observed at 446 nm. The different nature of the second excited state (nπ*) is consistent with the alternative route detected at 395-nm excitation. The results suggest the low-temperature photoproduct PYPHL as the most plausible candidate for the assignment of the cryogenically trapped early intermediate (Genick et al.). We cannot establish, however, a successful correspondence between the theoretical spectrum for the nanosecond time-resolved x-ray structure [Perman, B., Šrajer, V., Ren, Z., Teng, T., Pradervand, C., et al. (1998) Science 279, 1946–1950] and any of the spectroscopic photoproducts known up to date. It is fully confirmed that the colorless light-activated intermediate recorded by millisecond time-resolved crystallography [Genick, U. K., Borgstahl, G. E. O., Ng, K., Ren, Z., Pradervand, C., et al. (1997) Science 275, 1471–1475] is protonated, nicely matching the spectroscopic features of the photoproduct PYPM. The overall contribution demonstrates that a combined analysis of high-level theoretical results and experimental data can be of great value to perform assignments of detected intermediates in a photocycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BRCA1 is a breast and ovarian cancer-specific tumor suppressor that seems to be involved in transcription and DNA repair. Here we report that BRCA1 exhibits a bona fide ubiquitin (Ub) protein ligase (E3) activity, and that cancer-predisposing mutations within the BRCA1 RING domain abolish its Ub ligase activity. Furthermore, these mutants are unable to reverse γ-radiation hypersensitivity of BRCA1-null human breast cancer cells, HCC1937. Additionally, these mutations within the BRCA1 RING domain are not capable of restoring a G2 + M checkpoint in HCC1937 cells. These results establish a link between Ub protein ligase activity and γ-radiation protection function of BRCA1, and provide an explanation for why mutations within the BRCA1 RING domain predispose to cancer. Furthermore, we propose that the analysis of the Ub ligase activity of RING-domain mutations identified in patients may constitute an assay to predict predisposition to cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram, and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28–33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated Zn compartmentation in the root, Zn transport into the xylem, and Zn absorption into leaf cells in Thlaspi caerulescens, a Zn-hyperaccumulator species, and compared them with those of a related nonaccumulator species, Thlaspi arvense. 65Zn-compartmental analysis conducted with roots of the two species indicated that a significant fraction of symplasmic Zn was stored in the root vacuole of T. arvense, and presumably became unavailable for loading into the xylem and subsequent translocation to the shoot. In T. caerulescens, however, a smaller fraction of the absorbed Zn was stored in the root vacuole and was readily transported back into the cytoplasm. We conclude that in T. caerulescens, Zn absorbed by roots is readily available for loading into the xylem. This is supported by analysis of xylem exudate collected from detopped Thlaspi species seedlings. When seedlings of the two species were grown on either low (1 μm) or high (50 μm) Zn, xylem sap of T. caerulescens contained approximately 5-fold more Zn than that of T. arvense. This increase was not correlated with a stimulated production of any particular organic or amino acid. The capacity of Thlaspi species cells to absorb 65Zn was studied in leaf sections and leaf protoplasts. At low external Zn levels (10 and 100 μm), there was no difference in leaf Zn uptake between the two Thlaspi species. However, at 1 mm Zn2+, 2.2-fold more Zn accumulated in leaf sections of T. caerulescens. These findings indicate that altered tonoplast Zn transport in root cells and stimulated Zn uptake in leaf cells play a role in the dramatic Zn hyperaccumulation expressed in T. caerulescens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most evolutionary studies of oceanic islands have focused on the Pacific Ocean. There are very few examples from the Atlantic archipelagos, especially Macaronesia, despite their unusual combination of features, including a close proximity to the continent, a broad range of geological ages, and a biota linked to a source area that existed in the Mediterranean basin before the late Tertiary. A chloroplast DNA (cpDNA) restriction site analysis of Argyranthemum (Asteraceae: Anthemideae), the largest endemic genus of plants of any volcanic archipelago in the Atlantic Ocean, was performed to examine patterns of plant evolution in Macaronesia. cpDNA data indicated that Argyranthemum is a monophyletic group that has speciated recently. The cpDNA tree showed a weak correlation with the current sectional classification and insular distribution. Two major cpDNA lineages were identified. One was restricted to northern archipelagos--e.g., Madeira, Desertas, and Selvagens--and the second comprised taxa endemic to the southern archipelago--e.g., the Canary Islands. The two major radiations identified in the Canaries are correlated with distinct ecological habitats; one is restricted to ecological zones under the influence of the northeastern trade winds and the other to regions that are not affected by these winds. The patterns of phylogenetic relationships in Argyranthemum indicate that interisland colonization between similar ecological zones is the main mechanism for establishing founder populations. This phenomenon, combined with rapid radiation into distinct ecological zones and interspecific hybridization, is the primary explanation for species diversification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The x-ray absorption fine structure (XAFS) zinc K-edge steps for intact stages I,II and V,VI Xenopus laevis oocytes demonstrate that the zinc concentration is about 3 and 1 mM, respectively. However, the chi(k) function for the early stage oocytes differs markedly from that for the late one. Analysis of the XAFS data for stage I,II oocytes indicates that zinc is bound to 2.0 +/- 0.5 sulfur atoms at an average coordination distance of 2.29 +/- 0.02 angstroms and 2.0 +/- 0.5 nitrogen or oxygen (N/O) atoms at 2.02 +/- 0.02 angstroms. In marked contrast, in stage V,VI oocytes, zinc is bound to 4.1 +/- 0.4 N/O atoms at an average distance of 1.98 +/- 0.01 angstroms. Our previous studies demonstrated that 90% of the zinc in stage VI oocytes is sequestered within yolk platelets, associated with a single molecule, lipovitellin, the proteolytically processed product of vitellogenin. XAFS analysis of yolk platelets, lipovitellin, and vitellogenin demonstrates that zinc is bound to 4.0 +/- 0.5 N/O ligands at an average distance of 1.98 +/- 0.01 angstroms in each case, identical to that of stage V,VI oocytes. The higher shell contributions in the Fourier transforms indicate that two of the N/O zinc ligands are His in both stage V,VI and I,II oocytes. The results show that in stage I,II oocytes, there is a high concentration of a zinc protein whose zinc coordination site likely is composed of (His)2(Cys)2, such as, e.g., TFIIIA. As the oocytes develop, the predominant zinc species becomes one that exhibits the (His)2(N/0)2 zinc site found in lipovitellin. Hence, the ligands to the zinc atoms in intact oocytes and the changes that take place as a function of oogenesis and after their fertilization, during embryogenesis, now can be examined and explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5' end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525, 555, 580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods.