5 resultados para quaternion algebras

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use Voiculescu’s free probability theory to prove the existence of prime factors, hence answering a longstanding problem in the theory of von Neumann algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Representations of the (infinite) canonical anticommutation relations and the associated operator algebra, the fermion algebra, are studied. A “coupling constant” (in (0,1]) is defined for primary states of “finite type” of that algebra. Primary, faithful states of finite type with arbitrary coupling are constructed and classified. Their physical significance for quantum thermodynamical systems at high temperatures is discussed. The scope of this study is broadened to include a large class of operator algebras sharing some of the structural properties of the fermion algebra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum groups have been studied intensively for the last two decades from various points of view. The underlying mathematical structure is that of an algebra with a coproduct. Compact quantum groups admit Haar measures. However, if we want to have a Haar measure also in the noncompact case, we are forced to work with algebras without identity, and the notion of a coproduct has to be adapted. These considerations lead to the theory of multiplier Hopf algebras, which provides the mathematical tool for studying noncompact quantum groups with Haar measures. I will concentrate on the *-algebra case and assume positivity of the invariant integral. Doing so, I create an algebraic framework that serves as a model for the operator algebra approach to quantum groups. Indeed, the theory of locally compact quantum groups can be seen as the topological version of the theory of quantum groups as they are developed here in a purely algebraic context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory.