9 resultados para purely electric
em National Center for Biotechnology Information - NCBI
Resumo:
Wounding corneal epithelium establishes a laterally oriented, DC electric field (EF). Corneal epithelial cells (CECs) cultured in similar physiological EFs migrate cathodally, but this requires serum growth factors. Migration depends also on the substrate. On fibronectin (FN) or laminin (LAM) substrates in EF, cells migrated faster and more directly cathodally. This also was serum dependent. Epidermal growth factor (EGF) restored cathodal-directed migration in serum-free medium. Therefore, the hypothesis that EGF is a serum constituent underlying both field-directed migration and enhanced migration on ECM molecules was tested. We used immunofluorescence, flow cytometry, and confocal microscopy and report that 1) EF exposure up-regulated the EGF receptor (EGFR); so also did growing cells on substrates of FN or LAM; and 2) EGFRs and actin accumulated in the cathodal-directed half of CECs, within 10 min in EF. The cathodal asymmetry of EGFR and actin staining was correlated, being most marked at the cell–substrate interface and showing similar patterns of asymmetry at various levels through a cell. At the cell–substrate interface, EGFRs and actin frequently colocalized as interdigitated, punctate spots resembling tank tracks. Cathodal accumulation of EGFR and actin did not occur in the absence of serum but were restored by adding ligand to serum-free medium. Inhibition of MAPK, one second messenger engaged by EGF, significantly reduced EF-directed cell migration. Transforming growth factor β and fibroblast growth factor also restored cathodal-directed cell migration in serum-free medium. However, longer EF exposure was needed to show clear asymmetric distribution of the receptors for transforming growth factor β and fibroblast growth factor. We propose that up-regulated expression and redistribution of EGFRs underlie cathodal-directed migration of CECs and directed migration induced by EF on FN and LAM.
Resumo:
Choline is an important metabolite in all cells due to the major contribution of phosphatidylcholine to the production of membranes, but it takes on an added role in cholinergic neurons where it participates in the synthesis of the neurotransmitter acetylcholine. We have cloned a suppressor for a yeast choline transport mutation from a Torpedo electric lobe yeast expression library by functional complementation. The full-length clone encodes a protein with 10 putative transmembrane domains, two of which contain transporter-like motifs, and whose expression increased high-affinity choline uptake in mutant yeast. The gene was called CTL1 for its choline transporter-like properties. The homologous rat gene, rCTL1, was isolated and found to be highly expressed as a 3.5-kb transcript in the spinal cord and brain and as a 5-kb transcript in the colon. In situ hybridization showed strong expression of rCTL1 in motor neurons and oligodendrocytes and to a lesser extent in various neuronal populations throughout the rat brain. High levels of rCTL1 were also identified in the mucosal cell layer of the colon. Although the sequence of the CTL1 gene shows clear homology with a single gene in Caenorhabditis elegans, several homologous genes are found in mammals (CTL2–4). These results establish a new family of genes for transporter-like proteins in eukaryotes and suggest that one of its members, CTL1, is involved in supplying choline to certain cell types, including a specific subset of cholinergic neurons.
Resumo:
A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane.
Resumo:
Application of electric fields tangent to the plane of a confined patch of fluid bilayer membrane can create lateral concentration gradients of the lipids. A thermodynamic model of this steady-state behavior is developed for binary systems and tested with experiments in supported lipid bilayers. The model uses Flory’s approximation for the entropy of mixing and allows for effects arising when the components have different molecular areas. In the special case of equal area molecules the concentration gradient reduces to a Fermi–Dirac distribution. The theory is extended to include effects from charged molecules in the membrane. Calculations show that surface charge on the supporting substrate substantially screens electrostatic interactions within the membrane. It also is shown that concentration profiles can be affected by other intermolecular interactions such as clustering. Qualitative agreement with this prediction is provided by comparing phosphatidylserine- and cardiolipin-containing membranes.
Resumo:
We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum.
Resumo:
Experiments were performed on three abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) mutants, notabilis, flacca, and sitiens, to investigate the role of ABA and jasmonic acid (JA) in the generation of electrical signals and Pin2 (proteinase inhibitor II) gene expression. We selected these mutants because they contain different levels of endogenous ABA. ABA levels in the mutant sitiens were reduced to 8% of the wild type, in notabilis they were reduced to 47%, and in flacca they were reduced to 21%. In wild-type and notabilis tomato plants the induction of Pin2 gene expression could be elicited by heat treatment, current application, or mechanical wounding. In flacca and sitiens only heat stimulation induced Pin2 gene expression. JA levels in flacca and sitiens plants also accumulated strongly upon heat stimulation but not upon mechanical wounding or current application. Characteristic electrical signals evolved in the wild type and in the notabilis and flacca mutants consisting of a fast action potential and a slow variation potential. However, in sitiens only heat evoked electrical signals; mechanical wounding and current application did not change the membrane potential. In addition, exogenous application of ABA to wild-type tomato plants induced transient changes in membrane potentials, indicating the involvement of ABA in the generation of electrical signals. Our data strongly suggest the presence of a minimum threshold value of ABA within the plant that is essential for the early events in electrical signaling and mediation of Pin2 gene expression upon wounding. In contrast, heat-induced Pin2 gene expression and membrane potential changes were not dependent on the ABA level but, rather, on the accumulation of JA.
Resumo:
Classical molecular dynamics is applied to the rotation of a dipolar molecular rotor mounted on a square grid and driven by rotating electric field E(ν) at T ≃ 150 K. The rotor is a complex of Re with two substituted o-phenanthrolines, one positively and one negatively charged, attached to an axial position of Rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{4+}}}\end{equation*}\end{document} in a [2]staffanedicarboxylate grid through 2-(3-cyanobicyclo[1.1.1]pent-1-yl)malonic dialdehyde. Four regimes are characterized by a, the average lag per turn: (i) synchronous (a < 1/e) at E(ν) = |E(ν)| > Ec(ν) [Ec(ν) is the critical field strength], (ii) asynchronous (1/e < a < 1) at Ec(ν) > E(ν) > Ebo(ν) > kT/μ, [Ebo(ν) is the break-off field strength], (iii) random driven (a ≃ 1) at Ebo(ν) > E(ν) > kT/μ, and (iv) random thermal (a ≃ 1) at kT/μ > E(ν). A fifth regime, (v) strongly hindered, W > kT, Eμ, (W is the rotational barrier), has not been examined. We find Ebo(ν)/kVcm−1 ≃ (kT/μ)/kVcm−1 + 0.13(ν/GHz)1.9 and Ec(ν)/kVcm−1 ≃ (2.3kT/μ)/kVcm−1 + 0.87(ν/GHz)1.6. For ν > 40 GHz, the rotor behaves as a macroscopic body with a friction constant proportional to frequency, η/eVps ≃ 1.14 ν/THz, and for ν < 20 GHz, it exhibits a uniquely molecular behavior.
Resumo:
The application of an external electric field to dry films of Asp-85-->Asn mutant bacteriorhodopsin causes deprotonation of the Schiff base, resulting in a shift of the optical absorption maximum from 600 nm to 400 nm. This is in marked contrast to the case of wild-type bacteriorhodopsin films, in which electric fields produce a red-shifted product whose optical properties are similar to those of the acid-blue form of the protein. This difference is due to the much weaker binding of the Schiff-base proton in the mutant protein, as indicated by its low pK of approximately 9, as compared with the value pK approximately 13 in the wild type. Other bacteriorhodopsins with lowered Schiff-base pK values should also exhibit a field-induced shift in the protonation equilibrium of the Schiff base. We propose mechanisms to account for these observations.
Resumo:
Oscillating electric fields can be rectified by proteins in cell membranes to give rise to a dc transport of a substance across the membrane or a net conversion of a substrate to a product. This provides a basis for signal averaging and may be important for understanding the effects of weak extremely low frequency (ELF) electric fields on cellular systems. We consider the limits imposed by thermal and "excess" biological noise on the magnitude and exposure duration of such electric field-induced membrane activity. Under certain circumstances, the excess noise leads to an increase in the signal-to-noise ratio in a manner similar to processes labeled "stochastic resonance." Numerical results indicate that it is difficult to reconcile biological effects with low field strengths.