2 resultados para protonic conduction

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotransmitter transporters couple to existing ion gradients to achieve reuptake of transmitter into presynaptic terminals. For coupled cotransport, substrates and ions cross the membrane in fixed stoichiometry. This is in contrast to ion channels, which carry an arbitrary number of ions depending on the channel open time. Members of the gamma-aminobutyric acid transporter gene family presumably function with fixed stoichiometry in which a set number of ions cotransport with one transmitter molecule. Here we report channel-like events from a presumably fixed stoichiometry [norepinephrine (NE)+, Na+, and Cl-], human NE (hNET) in the gamma-aminobutyric acid transporter gene family. These events are stimulated by NE and by guanethidine, an hNET substrate, and they are blocked by cocaine and the antidepressant desipramine. Voltage-clamp data combined with NE uptake data from these same cells indicate that hNETs have two functional modes of conduction: a classical transporter mode (T-mode) and a novel channel mode (C-mode). Both T-mode and C-mode are gated by the same substrates and antagonized by the same blockers. T-mode is putatively electrogenic because the transmitter and cotransported ions sum to one net charge. However, C-mode carries virtually all of the transmitter-induced current, even though it occurs with low probability. This is because each C-mode opening transports hundreds of charges per event. The existence of a channel mode of conduction in a previously established fixed-stoichiometry transporter suggests the appearance of an aqueous pore through the transporter protein during the transport cycle and may have significance for transporter regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.