69 resultados para proton transporting adenosine triphosphatase

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast Ca2+ adenosine triphosphatase Pmr1, located in medial-Golgi, has been implicated in intracellular transport of Ca2+ and Mn2+ ions. We show here that addition of Mn2+ greatly alleviates defects of pmr1 mutants in N-linked and O-linked protein glycosylation. In contrast, accurate sorting of carboxypeptidase Y (CpY) to the vacuole requires a sufficient supply of intralumenal Ca2+. Most remarkably, pmr1 mutants are also unable to degrade CpY*, a misfolded soluble endoplasmic reticulum protein, and display phenotypes similar to mutants defective in the stress response to malfolded endoplasmic reticulum proteins. Growth inhibition of pmr1 mutants on Ca2+-deficient media is overcome by expression of other Ca2+ pumps, including a SERCA-type Ca2+ adenosine triphosphatase from rabbit, or by Vps10, a sorting receptor guiding non-native luminal proteins to the vacuole. Our analysis corroborates the dual function of Pmr1 in Ca2+ and Mn2+ transport and establishes a novel role of this secretory pathway pump in endoplasmic reticulum-associated processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deflagellation of Chlamydomonas reinhardtii, and other flagellated and ciliated cells, is a highly specific process that involves signal-induced severing of the outer doublet microtubules at a precise site in the transition region between the axoneme and basal body. Although the machinery of deflagellation is activated by Ca2+, the mechanism of microtubule severing is unknown. Severing of singlet microtubules has been observed in vitro to be catalyzed by katanin, a heterodimeric adenosine triphosphatase that can remove tubulin subunits from the walls of stable microtubules. We found that purified katanin induced an ATP-dependent severing of the Chlamydomonas axoneme. Using Western blot analysis and indirect immunofluorescence, we demonstrate that Chlamydomonas expresses a protein that is recognized by an anti-human katanin antibody and that this protein is localized, at least in part, to the basal body complex. Using an in vitro severing assay, we show that the protein(s) responsible for Ca2+-activated outer doublet severing purify with the flagellar-basal body complex. Furthermore, deflagellation of purified flagellar-basal body complexes is significantly blocked by the anti-katanin antibody. Taken together, these data suggest that a katanin-like mechanism may mediate the severing of the outer doublet microtubules during Chlamydomonas deflagellation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new and sensitive molecular probe, 2-(2′-hydroxyphenyl)imidazo[1,2-a]pyridine (HPIP), for monitoring structural changes in lipid bilayers is presented. Migration of HPIP from water into vesicles involves rupture of hydrogen (H) bonds with water and formation of an internal H bond once the probe is inside the vesicle. These structural changes of the dye allow the occurrence of a photoinduced intramolecular proton-transfer reaction and a subsequent twisting/rotational process upon electronic excitation of the probe. The resulting large Stokes-shifted fluorescence band depends on the twisting motion of the zwitterionic phototautomer and is characterized in vesicles of dimyristoyl-phosphatidylcholine and in dipalmitoyl-phosphatidylcholine at the temperature range of interest and in the presence of cholesterol. Because the fluorescence of aqueous HPIP does not interfere in the emission of the probe within the vesicles, HPIP proton-transfer/twisting motion fluorescence directly allows us to monitor and quantify structural changes within bilayers. The static and dynamic fluorescence parameters are sensitive enough to such changes to suggest this photostable dye as a potential molecular probe of the physical properties of lipid bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine released during cardiac ischemia exerts a potent, protective effect in the heart. A newly recognized adenosine receptor, the A3 subtype, is expressed on the cardiac ventricular cell, and its activation protects the ventricular heart cell against injury during a subsequent exposure to ischemia. A cultured chicken ventricular myocyte model was used to investigate the cardioprotective role of a novel adenosine A3 receptor. The protection mediated by prior activation of A3 receptors exhibits a significantly longer duration than that produced by activation of the adenosine A1 receptor. Prior exposure of the myocytes to brief ischemia also protected them against injury sustained during a subsequent exposure to prolonged ischemia. The adenosine A3 receptor-selective antagonist 3-ethyl 5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) caused a biphasic inhibition of the protective effect of the brief ischemia. The concomitant presence of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) converted the MRS1191-induced dose inhibition curve to a monophasic one. The combined presence of both antagonists abolished the protective effect induced by the brief ischemia. Thus, activation of both A1 and A3 receptors is required to mediate the cardioprotective effect of the brief ischemia. Cardiac atrial cells lack native A3 receptors and exhibit a shorter duration of cardioprotection than do ventricular cells. Transfection of atrial cells with cDNA encoding the human adenosine A3 receptor causes a sustained A3 agonist-mediated cardioprotection. The study indicates that cardiac adenosine A3 receptor mediates a sustained cardioprotective function and represents a new cardiac therapeutic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine has been identified in the anterior pituitary gland and is secreted from cultured folliculostellate (FS) cells. To determine whether adenosine controls the secretion of anterior pituitary hormones in vitro, adenosine was incubated with anterior pituitaries. It stimulated prolactin (PRL) release at the lowest concentration used (10−10 M); the stimulation peaked at 10−8 M with a threefold increase in release and declined to minimal stimulation at 10−4 and 10−3 M. Follicle-stimulating hormone release was maximally inhibited at 10−8 M, whereas luteinizing hormone release was not significantly inhibited. Two selective A1 adenosine receptor antagonists (10−7 or 10−5 M) had no effect on basal PRL release, but either antagonist completely blocked the response to the most effective concentration of adenosine (10−8 M). In contrast, a highly specific A2 receptor antagonist (10−7 or 10−5 M) had no effect on basal PRL release or the stimulation of PRL release induced by adenosine (10−8 M). We conclude that adenosine acts to stimulate PRL release in vitro by activating A1 receptors. Since the A1 receptors decrease intracellular-free calcium, this would decrease the activation of nitric oxide synthase in the FS cells, resulting in decreased release of nitric oxide (NO). NO inhibits PRL release by activating guanylate cyclase that synthesizes cGMP from GTP; cGMP concentrations increase in the lactotrophs leading to inhibition of PRL release. In the case of adenosine, NO release from the FS cells decreases, resulting in decreased concentrations of NO in the lactotrophs, consequent decreased cGMP formation, and resultant increased PRL release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editing of RNA changes the read-out of information from DNA by altering the nucleotide sequence of a transcript. One type of RNA editing found in all metazoans uses double-stranded RNA (dsRNA) as a substrate and results in the deamination of adenosine to give inosine, which is translated as guanosine. Editing thus allows variant proteins to be produced from a single pre-mRNA. A mechanism by which dsRNA substrates form is through pairing of intronic and exonic sequences before the removal of noncoding sequences by splicing. Here we report that the RNA editing enzyme, human dsRNA adenosine deaminase (DRADA1, or ADAR1) contains a domain (Zα) that binds specifically to the left-handed Z-DNA conformation with high affinity (KD = 4 nM). As formation of Z-DNA in vivo occurs 5′ to, or behind, a moving RNA polymerase during transcription, recognition of Z-DNA by DRADA1 provides a plausible mechanism by which DRADA1 can be targeted to a nascent RNA so that editing occurs before splicing. Analysis of sequences related to Zα has allowed identification of motifs common to this class of nucleic acid binding domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamic acid 286 (E286; Escherichia coli cytochrome bo3 numbering) in subunit I of the respiratory heme-copper oxidases is highly conserved and has been suggested to be involved in proton translocation. We report a technique of enzyme reconstitution that yields essentially unidirectionally oriented cytochrome bo3 vesicles in which proton translocation can be measured. Such experiments are not feasible in the E286Q mutant due to strong inhibition of respiration, but this is not the case for the mutants E286D and E286C. The reconstituted E286D mutant enzyme readily translocates protons whereas E286C does not. Loss of proton translocation in the D135N mutant, but not in D135E or D407N, also is verified using proteoliposomes. Stopped-flow experiments show that the peroxy intermediate accumulates in the reaction of the E286Q and E286C mutant enzymes with O2. We conclude that an acidic function of the 286 locus is essential for the mechanism of proton translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The M2 protein from influenza A virus forms proton-selective channels that are essential to viral function and are the target of the drug amantadine. Cys scanning was used to generate a series of mutants with successive substitutions in the transmembrane segment of the protein, and the mutants were expressed in Xenopus laevis oocytes. The effect of the mutations on reversal potential, ion currents, and amantadine resistance were measured. Fourier analysis revealed a periodicity consistent with a four-stranded coiled coil or helical bundle. A three-dimensional model of this structure suggests a possible mechanism for the proton selectivity of the M2 channel of influenza virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome c oxidase catalyzes the reduction of oxygen to water that is accompanied by pumping of four protons across the mitochondrial or bacterial membrane. Triggered by the results of recent x-ray crystallographic analyses, published data concerning the coupling of individual electron transfer steps to proton pumping are reanalyzed: Conversion of the conventional oxoferryl intermediate F to the fully oxidized form O is connected to pumping of only one proton. Most likely one proton is already pumped during the double reduction of O, and only three protons during conversion of the “peroxy” forms P to O via the oxoferryl form F. Based on the available structural, spectroscopic, and mutagenesis data, a detailed mechanistic model, carefully considering electrostatic interactions, is presented. In this model, each of the four reductions of heme a during the catalytic cycle is coupled to the uptake of one proton via the D-pathway. These protons, but never more than two, are temporarily stored in the regions of the heme a and a3 propionates and are driven to the outside (“pumped”) by electrostatic repulsion from protons entering the active site during turnover. The first proton is pumped by uptake of one proton via the K-pathway during reduction, the second and third proton during the P → F transition when the D-pathway and the active site become directly connected, and the fourth one upon conversion of F to O. Atomic structures are assigned to each intermediate including F′ with an alternative route to O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging of H217O has a number of important applications. Mapping the distribution of H217O produced by oxidative metabolism of 17O-enriched oxygen gas may lead to a new method of metabolic functional imaging; regional cerebral blood flow also can be measured by measuring the H217O distribution after the injection of 17O-enriched physiological saline solution. Previous studies have proposed a method for indirect detection of 17O. The method is based on the shortening of the proton T2 in H217O solutions, caused by the residual 17O-1H scalar coupling and transferred to the bulk water via fast chemical exchange. It has been shown that the proton T2 of H217O solutions can be restored to that of H216O by irradiating the resonance frequency of the 17O nucleus. The indirect 17O image thus is obtained by taking the difference between two T2-weighted spin-echo images: one acquired after irradiation of the 17O resonance and one acquired without irradiation. It also has been established that, at relatively low concentrations of H217O, the indirect method yields an image that quantitatively reflects the H217O distribution in the sample. The method is referred to as PRIMO (proton imaging of oxygen). In this work, we show in vivo proton images of the H217O distribution in a rat brain after an i.v. injection of H217O-enriched physiological saline solution. Implementing the indirect detection method in an echo-planar imaging sequence enabled obtaining H217O images with good spatial and temporal resolution of few seconds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of the cholinergic agonist carbachol on the spontaneous release of glutamate in cultured rat hippocampal cells. Spontaneous excitatory postsynaptic currents (sEPSCs) through glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type channels were recorded by means of the patch-clamp technique. Carbachol increased the frequency of sEPSCs in a concentration-dependent manner. The kinetic properties of the sEPSCs and the amplitude distribution histograms were not affected by carbachol, arguing for a presynaptic site of action. This was confirmed by measuring the turnover of the synaptic vesicular pool by means of the fluorescent dye FM 1–43. The carbachol-induced increase in sEPSC frequency was not mimicked by nicotine, but could be blocked by atropine or by pirenzepine, a muscarinic cholinergic receptor subtype M1 antagonist. Intracellular Ca2+ signals recorded with the fluorescent probe Fluo-3 indicated that carbachol transiently increased intracellular Ca2+ concentration. Since, however, carbachol still enhanced the sEPSC frequency in bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate-loaded cells, this effect could not be attributed to the rise in intracellular Ca2+ concentration. On the other hand, the protein kinase inhibitor staurosporine as well as a down-regulation of protein kinase C by prolonged treatment of the cells with 4β-phorbol 12-myristate 13-acetate inhibited the carbachol effect. This argues for an involvement of protein kinase C in presynaptic regulation of spontaneous glutamate release. Adenosine, which inhibits synaptic transmission, suppressed the carbachol-induced stimulation of sEPSCs by a G protein-dependent mechanism activated by presynaptic A1-receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented here are femtosecond pump-probe studies on the water-solvated 7-azaindole dimer, a model DNA base pair. In particular, studies are presented that further elucidate the nature of the reactive and nonreactive dimers and also provide new insights establishing that the excited state double-proton transfer in the dimer occurs in a stepwise rather than a concerted manner. A major question addressed is whether the incorporation of a water molecule with the dimer results in the formation of species that are unable to undergo excited state double-proton transfer, as suggested by a recent study reported in the literature [Nakajima, A., Hirano, M., Hasumi, R., Kaya, K., Watanabe, H., Carter, C. C., Williamson, J. M. & Miller, T. (1997) J. Phys. Chem. 101, 392–398]. In contrast to this earlier work, our present findings reveal that both reactive and nonreactive dimers can coexist in the molecular beam under the same experimental conditions and definitively show that the clustering of water does not induce the formation of the nonreactive dimer. Rather, when present with a species already determined to be a nonreactive dimer, the addition of water can actually facilitate the occurrence of the proton transfer reaction. Furthermore, on attaining a critical hydration number, the data for the nonreactive dimer suggest a solvation-induced conformational structure change leading to proton transfer on the photoexcited half of the 7-azaindole dimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of proton transfer from the bulk into the membrane protein interior was studied. The light-induced reduction of a bound ubiquinone molecule QB by the photosynthetic reaction center is accompanied by proton trapping. We used kinetic spectroscopy to measure (i) the electron transfer to QB (at 450 nm), (ii) the electrogenic proton delivery from the surface to the QB site (by electrochromic carotenoid response at 524 nm), and (iii) the disappearance of protons from the bulk solution (by pH indicators). The electron transfer to QB− and the proton-related electrogenesis proceeded with the same time constant of ≈100 μs (at pH 6.2), whereas the alkalinization in the bulk was distinctly delayed (τ ≈ 400 μs). We investigated the latter reaction as a function of the pH indicator concentration, the added pH buffers, and the temperature. The results led us to the following conclusions: (i) proton transfer from the surface-located acidic groups into the QB site followed the reduction of QB without measurable delay; (ii) the reprotonation of these surface groups by pH indicators and hydronium ions was impeded, supposedly, because of their slow diffusion in the surface water layer; and (iii) as a result, the protons were slowly donated by neutral water to refill the proton vacancies at the surface. It is conceivable that the same mechanism accounts for the delayed relaxation of the surface pH changes into the bulk observed previously with bacteriorhodopsin membranes and thylakoids. Concerning the coupling between proton pumps in bioenergetic membranes, our results imply a tendency for the transient confinement of protons at the membrane surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A protein fluorescence probe system, coupling excited-state intermolecular Förster energy transfer and intramolecular proton transfer (PT), is presented. As an energy donor for this system, we used tryptophan, which transfers its excitation energy to 3-hydroxyflavone (3-HF) as a flavonol prototype, an acceptor exhibiting excited-state intramolecular PT. We demonstrate such a coupling in human serum albumin–3-HF complexes, excited via the single intrinsic tryptophan (Trp-214). Besides the PT tautomer fluorescence (λmax = 526 nm), these protein–probe complexes exhibit a 3-HF anion emission (λmax = 500 nm). Analysis of spectroscopic data leads to the conclusion that two binding sites are involved in the human serum albumin–3-HF interaction. The 3-HF molecule bound in the higher affinity binding site, located in the IIIA subdomain, has the association constant (k1) of 7.2 × 105 M−1 and predominantly exists as an anion. The lower affinity site (k2 = 2.5 × 105 M−1), situated in the IIA subdomain, is occupied by the neutral form of 3-HF (normal tautomer). Since Trp-214 is situated in the immediate vicinity of the 3-HF normal tautomer bound in the IIA subdomain, the intermolecular energy transfer for this donor/acceptor pair has a 100% efficiency and is followed by the PT tautomer fluorescence. Intermolecular energy transfer from the Trp-214 to the 3-HF anion bound in the IIIA subdomain is less efficient and has the rate of 1.61 × 108 s−1, thus giving for the donor/acceptor distance a value of 25.5 Å.