3 resultados para prosthesis pigmentation

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulation of red phlobaphene pigments in sorghum grain pericarp is under the control of the Y gene. A mutable allele of Y, designated as y-cs (y-candystripe), produces a variegated pericarp phenotype. Using probes from the maize p1 gene that cross-hybridize with the sorghum Y gene, we isolated the y-cs allele containing a large insertion element. Our results show that the Y gene is a member of the MYB-transcription factor family. The insertion element, named Candystripe1 (Cs1), is present in the second intron of the Y gene and shares features of the CACTA superfamily of transposons. Cs1 is 23,018 bp in size and is bordered by 20-bp terminal inverted repeat sequences. It generated a 3-bp target site duplication upon insertion within the Y gene and excised from y-cs, leaving a 2-bp footprint in two cases analyzed. Reinsertion of the excised copy of Cs1 was identified by Southern hybridization in the genome of each of seven red pericarp revertant lines tested. Cs1 is the first active transposable element isolated from sorghum. Our analysis suggests that Cs1-homologous sequences are present in low copy number in sorghum and other grasses, including sudangrass, maize, rice, teosinte, and sugarcane. The low copy number and high transposition frequency of Cs1 imply that this transposon could prove to be an efficient gene isolation tool in sorghum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Messenger RNA transcripts of the highly pigmented murine melanoma B16-F1 cells were compared with those from their weakly pigmented derivative B16-F10 cells by differential display. A novel gene called msg1 (melanocyte-specific gene) was found to be expressed at high levels in B16-F1 cells but at low levels in B16-F10 cells. Expression of msg1 was undetectable in the amelanotic K1735 murine melanoma cells. The pigmented murine melanocyte cell line melan-a expressed msg1, as did pigmented primary cultures of murine and human melanocytes; however, seven amelanotic or very weakly pigmented human melanoma cell lines were negative. Transformation of murine melanocytes by transfection with v-Ha-ras or Ela was accompanied by depigmentation and led to complete loss of msg1 expression. The normal tissue distribution of msg1 mRNA transcripts in adult mice was confined to melanocytes and testis. Murine msg1 and human MSG1 genes encode a predicted protein of 27 kDa with 75% overall amino acid identity and 96% identity within the C-terminal acidic domain of 54 amino acids. This C-terminal domain was conserved with 76% amino acid identity in another protein product of a novel human gene, MRG1 (msg1-related gene), isolated from normal human melanocyte cDNA by 5'-rapid amplification of cDNA ends based on the homology to msg1. The msg1 protein was localized to the melanocyte nucleus by immunofluorescence cytochemistry. We conclude that msg1 encodes a nuclear protein, is melanocyte-specific, and appears to be lost in depigmented melanoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermolysis bullosa simplex (EBS) is a group of autosomal dominant skin diseases characterized by blistering, due to mechanical stress-induced degeneration of basal epidermal cells. It is now well-established that the three major subtypes of EBS are genetic disorders of the basal epidermal keratins, keratin 5 (K5) and keratin 14 (K14). Here we show that a rare subtype, referred to as EBS with mottled pigmentation (MP), is also a disorder of these keratins. Affected members of two seemingly unrelated families with EBS-MP had a C to T point mutation in the second base position of codon 24 of one of two K5 alleles, leading to a Pro: Leu mutation. This mutation was not present in unaffected members nor in 100 alleles from normal individuals. Linkage analyses mapped the defect to this type II keratin gene (peak logarithm of odds score at phi = 0 of 3.9), which is located on chromosome 12q11-q13. This provides strong evidence that this mutation is responsible for the EBS-MP phenotype. Only conserved between K5 and K6, and not among any of the other type II keratins, Pro-24 is in the nonhelical head domain of K5, and only mildly perturbs the length of 10-nm keratin filaments assembled in vitro. However, this part of the K5 head domain is likely to protrude on the filament surface, perhaps leading to additional aberrations in intermediate filament architecture and/or in melanosome distribution that are seen ultrastructurally in patients with the mutation.