40 resultados para prostaglandin endoperoxide

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse bone marrow-derived mast cells (BMMCs) developed with interleukin 3 (IL-3) can be stimulated by c-kit ligand (KL) and accessory cytokines over a period of hours for direct delayed prostaglandin (PG) generation or over a period of days to prime for augmented IgE-dependent PG and leukotriene (LT) production, as previously reported. We now report that IL-4 is counterregulatory for each of these distinct KL-dependent responses. BMMCs cultured for 4 days with KL + IL-3 or with KL + IL-10 produced 5- to 7-fold more PGD2 and approximately 2-fold more LTC4 in response to IgE-dependent activation than BMMCs maintained in IL-3 alone. IL-4 inhibited the priming for increased IgE-dependent PGD2 and LTC4 production to the level obtained by activation of BMMCs maintained in IL-3 alone with an IC50 of approximately 0.2 ng/ml. IL-4 inhibited the KL-induced increase in expression of cytosolic phospholipase A2 (cPLA2) but had no effect on the incremental expression of PG endoperoxide synthase 1 (PGHS-1) and hematopoietic PGD2 synthase or on the continued baseline expression of 5-lipoxygenase, 5-lipoxygenase activating protein, and LTC4 synthase. BMMCs stimulated by KL + IL-10 for 10 h exhibited a delayed phase of PGD2 generation, which was dependent on de novo induction of PGHS-2. IL-4 inhibited the induction of PGHS-2 expression and the accompanying cytokine-initiated delayed PGD2 generation with an IC50 of approximately 6 ng/ml. IL-4 had no effect on the expression of PGHS-2 and the production of PGD2 elicited by addition of IL-1 beta to the combination of KL + IL-10. IL-4 had no effect on the immediate phase of eicosanoid synthesis elicited by KL alone or by IgE and antigen in BMMCs maintained in IL-3. Thus, the counterregulatory action of IL-4 on eicosanoid generation is highly selective for the induced incremental expression of cPLA2 and the de novo expression of PGHS-2, thereby attenuating time-dependent cytokine-regulated responses to stimulation via Fc epsilon receptor I and stimulation via c-kit, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peroxynitrite activates the cyclooxygenase activities of constitutive and inducible prostaglandin endoperoxide synthases by serving as a substrate for the enzymes’ peroxidase activities. Activation of purified enzyme is induced by direct addition of peroxynitrite or by in situ generation of peroxynitrite from NO coupling to superoxide anion. Cu,Zn-superoxide dismutase completely inhibits cyclooxygenase activation in systems where peroxynitrite is generated in situ from superoxide. In the murine macrophage cell line RAW264.7, the lipophilic superoxide dismutase-mimetic agents, Cu(II) (3,5-diisopropylsalicylic acid)2, and Mn(III) tetrakis(1-methyl-4-pyridyl)porphyrin dose-dependently decrease the synthesis of prostaglandins without affecting the levels of NO synthase or prostaglandin endoperoxide synthase or by inhibiting the release of arachidonic acid. These findings support the hypothesis that peroxynitrite is an important modulator of cyclooxygenase activity in inflammatory cells and establish that superoxide anion serves as a biochemical link between NO and prostaglandin biosynthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The highest concentrations of prostaglandins in nature are found in the Caribbean gorgonian Plexaura homomalla. Depending on its geographical location, this coral contains prostaglandins with typical mammalian stereochemistry (15S-hydroxy) or the unusual 15R-prostaglandins. Their metabolic origin has remained the subject of mechanistic speculations for three decades. Here, we report the structure of a type of cyclooxygenase (COX) that catalyzes transformation of arachidonic acid into 15R-prostaglandins. Using a homology-based reverse transcriptase–PCR strategy, we cloned a cDNA corresponding to a COX protein from the R variety of P. homomalla. The deduced peptide sequence shows 80% identity with the 15S-specific coral COX from the Arctic soft coral Gersemia fruticosa and ≈50% identity to mammalian COX-1 and COX-2. The predicted tertiary structure shows high homology with mammalian COX isozymes having all of the characteristic structural units and the amino acid residues important in catalysis. Some structural differences are apparent around the peroxidase active site, in the membrane-binding domain, and in the pattern of glycosylation. When expressed in Sf9 cells, the P. homomalla enzyme forms a 15R-prostaglandin endoperoxide together with 11R-hydroxyeicosatetraenoic acid and 15R-hydroxyeicosatetraenoic acid as by-products. The endoperoxide gives rise to 15R-prostaglandins and 12R-hydroxyheptadecatrienoic acid, identified by comparison to authentic standards. Evaluation of the structural differences of this 15R-COX isozyme should provide new insights into the substrate binding and stereospecificity of the dioxygenation reaction of arachidonic acid in the cyclooxygenase active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostaglandin D2 (PGD2) is an extensively studied sleep-promoting substance, but the neuroanatomical basis of PGD2-induced sleep is only partially understood. To determine potential regions involved in this response, we used Fos immunohistochemistry to identify neurons activated by infusion of PGD2 into the subarachnoid space below the rostral basal forebrain. PGD2 increased nonrapid eye movement sleep and induced striking expression of Fos in the ventrolateral preoptic area (VLPO), a cluster of neurons that may promote sleep by inhibiting the tuberomammillary nucleus, the source of the ascending histaminergic arousal system. Fos expression in the VLPO was positively correlated with the preceding amount of sleep and negatively correlated with Fos expression in the tuberomammillary nucleus. PGD2 also increased Fos immunoreactivity in the basal leptomeninges and several regions implicated in autonomic regulation. These observations suggest that PGD2 may induce sleep via leptomeningeal PGD2 receptors with subsequent activation of the VLPO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were performed on uteri from estrogen-primed female rats. Bradykinin (BK) (10−8 M) significantly augmented biosynthesis of prostaglandin F2 α (PGF2α) and prostaglandin E2 (PGE2), and this synthesis was completely blocked by NG-monomethyl l-arginine (NMMA) (300 μM), a competitive inhibitor of nitric oxide synthase (NOS). Blockade of prostaglandin synthesis by indomethacin caused rapid dissipation of isometric developed tension (IDT) induced by BK. Blockade of NOS with NMMA had similar but less marked effects. Combining the two inhibitors produced an even more rapid decay in IDT, suggesting that BK-induced NO release maintains IDT by release of prostanoids. The decline of frequency of contraction (FC) was not significantly altered by either indomethacin or NMMA but was markedly accelerated by combination of the inhibitors, which suggests that PGs maintain FC and therefore FC decline is accelerated only when PG production is blocked completely by combination of the two inhibitors of PG synthesis. The increase in IDT induced by oxytocin was unaltered by indomethacin, NMMA or their combination indicating that neither NO nor PGs are involved in the contractions induced by oxytocin. However, the decline in FC with time was significantly reduced by the inhibitor of NOS, NMMA, suggesting that FC decay following oxytocin is caused by NO released by the contractile process. In the case of PGF2α, NMMA resulted in increased initial IDT and FC. The decline in FC was rapid and dramatically inhibited by NMMA. Receptor-mediated contraction by BK, oxytocin, and PGF2α is modulated by NO that maintains IDT by releasing PGs but reduces IDT and FC via cyclic GMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipocalin-type prostaglandin D synthase (L-PGDS) is localized in the central nervous system and male genital organs of various mammals and is secreted as β-trace into the closed compartment of these tissues separated from the systemic circulation. In this study, we found that the mRNA for the human enzyme was expressed most intensely in the heart among various tissues examined. In human autopsy specimens, the enzyme was localized immunocytochemically in myocardial cells, atrial endocardial cells, and a synthetic phenotype of smooth muscle cells in the arteriosclerotic intima, and accumulated in the atherosclerotic plaque of coronary arteries with severe stenosis. In patients with stable angina (75–99% stenosis), the plasma level of L-PGDS was significantly (P < 0.05) higher in the great cardiac vein (0.694 ± 0.054 μg/ml, n = 7) than in the coronary artery (0.545 ± 0.034 μg/ml), as determined by a sandwich enzyme immunoassay. However, the veno-arterial difference in the plasma L-PGDS concentration was not observed in normal subjects without stenosis. After a percutaneous transluminal coronary angioplasty was performed to compress the stenotic atherosclerotic plaques, the L-PGDS concentration in the cardiac vein decreased significantly (P < 0.05) to 0.610 ± 0.051 μg/ml at 20 min and reached the arterial level within 1 h. These findings suggest that L-PGDS is present in both endocardium and myocardium of normal subjects and the stenotic site of patients with stable angina and is secreted into the coronary circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antiinflammatory action of aspirin generally has been attributed to direct inhibition of cyclooxygenases (COX-1 and COX-2), but additional mechanisms are likely at work. These include aspirin’s inhibition of NFκB translocation to the nucleus as well as the capacity of salicylates to uncouple oxidative phosphorylation (i.e., deplete ATP). At clinically relevant doses, salicylates cause cells to release micromolar concentrations of adenosine, which serves as an endogenous ligand for at least four different types of well-characterized receptors. Previously, we have shown that adenosine mediates the antiinflammatory effects of other potent and widely used antiinflammatory agents, methotrexate and sulfasalazine, both in vitro and in vivo. To determine in vivo whether clinically relevant levels of salicylate act via adenosine, via NFκB, or via the “inflammatory” cyclooxygenase COX-2, we studied acute inflammation in the generic murine air-pouch model by using wild-type mice and mice rendered deficient in either COX-2 or p105, the precursor of p50, one of the components of the multimeric transcription factor NFκB. Here, we show that the antiinflammatory effects of aspirin and sodium salicylate, but not glucocorticoids, are largely mediated by the antiinflammatory autacoid adenosine independently of inhibition of prostaglandin synthesis by COX-1 or COX-2 or of the presence of p105. Indeed, both inflammation and the antiinflammatory effects of aspirin and sodium salicylate were independent of the levels of prostaglandins at the inflammatory site. These experiments also provide in vivo confirmation that the antiinflammatory effects of glucocorticoids depend, in part, on the p105 component of NFκB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth differentiation factor-9 (GDF-9), an oocyte-secreted member of the transforming growth factor β superfamily, progesterone receptor, cyclooxygenase 2 (Cox2; Ptgs2), and the EP2 prostaglandin E2 (PGE2) receptor (EP2; Ptgerep2) are required for fertility in female but not male mice. To define the interrelationship of these factors, we used a preovulatory granulosa cell culture system in which we added recombinant GDF-9, prostaglandins, prostaglandin receptor agonists, or cyclooxygenase inhibitors. GDF-9 stimulated Cox2 mRNA within 2 h, and PGE2 within 6 h; however, progesterone was not increased until 12 h after addition of GDF-9. This suggested that Cox2 is a direct downstream target of GDF-9 but that progesterone synthesis required an intermediate. To determine whether prostaglandin synthesis was required for progesterone production, we analyzed the effects of PGE2 and cyclooxygenase inhibitors on this process. PGE2 can stimulate progesterone synthesis by itself, although less effectively than GDF-9 (3-fold vs. 6-fold increase over 24 h, respectively). Furthermore, indomethacin or NS-398, inhibitors of Cox2, block basal and GDF-9-stimulated progesterone synthesis. However, addition of PGE2 to cultures containing both GDF-9 and NS-398 overrides the NS-398 block in progesterone synthesis. To further define the PGE2-dependent pathway, we show that butaprost, a specific EP2 agonist, stimulates progesterone synthesis and overrides the NS-398 block. In addition, GDF-9 stimulates EP2 mRNA synthesis by a prostaglandin- and progesterone-independent pathway. Thus, GDF-9 induces an EP2 signal transduction pathway which appears to be required for progesterone synthesis in cumulus granulosa cells. These studies further demonstrate the importance of oocyte–somatic cell interactions in female reproduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostaglandin E2 receptors (EP) were detected by radioligand binding in nuclear fractions isolated from porcine brain and myometrium. Intracellular localization by immunocytofluorescence revealed perinuclear localization of EPs in porcine cerebral microvascular endothelial cells. Nuclear association of EP1 was also found in fibroblast Swiss 3T3 cells stably overexpressing EP1 and in human embryonic kidney 293 (Epstein–Barr virus-encoded nuclear antigen) cells expressing EP1 fused to green fluorescent protein. High-resolution immunostaining of EP1 revealed their presence in the nuclear envelope of isolated (cultured) endothelial cells and in situ in brain (cortex) endothelial cells and neurons. Stimulation of these nuclear receptors modulate nuclear calcium and gene transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 6-hr continuous infusion of 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenos ine (CGS21680), a selective A2a-adenosine agonist, into the subarachnoid space underlying the ventral surface region of the rostral basal forebrain, which has been defined as the prostaglandin (PG) D2-sensitive sleep-promoting zone, at rates of 0.02, 0.2, 2.0, and 12 pmol/min increased slow-wave sleep (SWS) and paradoxical sleep (PS) in a dose-dependent manner up to 183% and 202% of their respective baseline levels. The increments produced by the infusion of CGS21680 at 0.2 and 2.0 pmol/min were totally diminished when the rats had been pretreated with an i.p. injection of (E)-1,3-dipropyl-7-methyl-8-(3,4-dimethoxystyryl)xanthine (KF17837; 30 mg/kg of body weight), a selective A2-adenosine antagonist. In contrast, the infusion of N6-cyclohexyladenosine (CHA), a selective A1-adenosine agonist, at 2 pmol/min significantly suppressed SWS before causing an increase in SWS, and a decrease in PS was also markedly visible. Essentially the same effects of CGS21680 and CHA were observed when these compounds were administered to the parenchymal region of the rostral basal forebrain through chronically implanted microdialysis probes. Thus, we clearly showed that stimulation of A2a-adenosine receptors in the rostral basal forebrain promotes SWS and PS. Furthermore, i.p. injections of KF17837 at 30 and 100 mg/kg of body weight dose-dependently attenuated the magnitude of the SWS increase produced by the infusion of PGD2 into the subarachnoid space of the sleep-promoting zone, thus indicating that the A2a-adenosine receptors are crucial in the sleep-promoting process triggered by PGD2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from epidemiological studies, clinical trials, and animal experiments indicates that inhibitors of prostaglandin synthesis lower the risk of colon cancer. We tested the hypothesis that abnormal expression of prostaglandin H synthase 2 (PHS-2), which can be induced by oncogenes and tumor promoters, occurs during colon carcinogenesis by examining its level in colon tumors. Human colon cancers were found to have an increased expression of PHS-2 mRNA compared with normal colon specimens from the same patient (n = 5). In situ hybridization showed that the neoplastic colonocytes had increased expression of PHS-2 (n = 4). Additionally, five colon cancer cell lines were shown to express high levels of PHS-2 mRNA even in the absence of a known inducer of PHS-2. To study the basis for this increased gene expression, we transfected a colon cancer cell line, HCT-116, with a reporter gene containing 2.0 kb of the 5' regulatory sequence of the PHS-2 gene. Constitutive transcription of the reporter gene was observed, whereas normal control cell lines transcribed the reporter only in response to an exogenous agonist. We conclude that PHS-2 is transcribed abnormally in human colon cancers and that this may be one mechanism by which prostaglandins or related compounds that support carcinogenesis are generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary artery disease is a leading cause of death in individuals with chronic spinal cord injury (SCI). However, platelets of those with SCI (n = 30) showed neither increased aggregation nor resistance to the antiaggregatory effects of prostacyclin when compared with normal controls (n = 30). Prostanoid-induced cAMP synthesis was similar in both groups. In contrast, prostacyclin, which completely inhibited the platelet-stimulated thrombin generation in normal controls, failed to do so in those with SCI. Scatchard analysis of the binding of [3H]prostaglandin E1, used as a prostacyclin receptor probe, showed the presence of one high-affinity (Kd1 = 8.11 +/- 2.80 nM; n1 = 172 +/- 32 sites per cell) and one low-affinity (Kd2 = 1.01 +/- 0.3 microM; n2 = 1772 +/- 226 sites per cell) prostacyclin receptor in normal platelets. In contrast, the same analysis in subjects with SCI showed significant loss (P < 0.001) of high-affinity receptor sites (Kd1 = 6.34 +/- 1.91 nM; n1 = 43 +/- 10 sites per cell) with no significant change in the low affinity-receptors (Kd2 = 1.22 +/- 0.23; n2 = 1820 +/- 421). Treatment of these platelets with insulin, which has been demonstrated to restore both of the high- and low-affinity prostaglandin receptor numbers to within normal ranges in coronary artery disease, increased high-affinity receptor numbers and restored the prostacyclin effect on thrombin generation. These results demonstrate that the loss of the inhibitory effect of prostacyclin on the stimulation of thrombin generation was due to the loss of platelet high-affinity prostanoid receptors, which may contribute to atherogenesis in individuals with chronic SCI.