6 resultados para product transfer

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photon bursts from single diffusing donor-acceptor labeled macromolecules were used to measure intramolecular distances and identify subpopulations of freely diffusing macromolecules in a heterogeneous ensemble. By using DNA as a rigid spacer, a series of constructs with varying intramolecular donor-acceptor spacings were used to measure the mean and distribution width of fluorescence resonance energy transfer (FRET) efficiencies as a function of distance. The mean single-pair FRET efficiencies qualitatively follow the distance dependence predicted by Förster theory. Possible contributions to the widths of the FRET efficiency distributions are discussed, and potential applications in the study of biopolymer conformational dynamics are suggested. The ability to measure intramolecular (and intermolecular) distances for single molecules implies the ability to distinguish and monitor subpopulations of molecules in a mixture with different distances or conformational states. This is demonstrated by monitoring substrate and product subpopulations before and after a restriction endonuclease cleavage reaction. Distance measurements at single-molecule resolution also should facilitate the study of complex reactions such as biopolymer folding. To this end, the denaturation of a DNA hairpin was examined by using single-pair FRET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin E (α-tocopherol) is a fat-soluble antioxidant that is transported by plasma lipoproteins in the body. α-Tocopherol taken up by the liver with lipoprotein is thought to be resecreted into the plasma in very low density lipoprotein (VLDL). α-Tocopherol transfer protein (αTTP), which was recently identified as a product of the causative gene for familial isolated vitamin E deficiency, is a cytosolic liver protein and plays an important role in the efficient recycling of plasma vitamin E. To throw light on the mechanism of αTTP-mediated α-tocopherol transfer in the liver cell, we devised an assay system using the hepatoma cell line McARH7777. Using this system, we found that the secretion of α-tocopherol was more efficient in cells expressing αTTP than in matched cells lacking αTTP. Brefeldin A, which effectively inhibits VLDL secretion by disrupting the Golgi apparatus, had no effect on α-tocopherol secretion, indicating that αTTP-mediated α-tocopherol secretion is not coupled to VLDL secretion. Among other agents tested, only 25-hydroxycholesterol, a modulator of cholesterol metabolism, inhibited α-tocopherol secretion. This inhibition is most likely mediated by oxysterol-binding protein. These results suggest that αTTP present in the liver cytosol functions to stimulate secretion of cellular α-tocopherol into the extracellular medium and that the reaction utilizes a novel non-Golgi-mediated pathway that may be linked to cellular cholesterol metabolism and/or transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian electron transfer flavoproteins (ETF) are heterodimers containing a single equivalent of flavin adenine dinucleotide (FAD). They function as electron shuttles between primary flavoprotein dehydrogenases involved in mitochondrial fatty acid and amino acid catabolism and the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase. The structure of human ETF solved to 2.1-Å resolution reveals that the ETF molecule is comprised of three distinct domains: two domains are contributed by the α subunit and the third domain is made up entirely by the β subunit. The N-terminal portion of the α subunit and the majority of the β subunit have identical polypeptide folds, in the absence of any sequence homology. FAD lies in a cleft between the two subunits, with most of the FAD molecule residing in the C-terminal portion of the α subunit. Alignment of all the known sequences for the ETF α subunits together with the putative FixB gene product shows that the residues directly involved in FAD binding are conserved. A hydrogen bond is formed between the N5 of the FAD isoalloxazine ring and the hydroxyl side chain of αT266, suggesting why the pathogenic mutation, αT266M, affects ETF activity in patients with glutaric acidemia type II. Hydrogen bonds between the 4′-hydroxyl of the ribityl chain of FAD and N1 of the isoalloxazine ring, and between αH286 and the C2-carbonyl oxygen of the isoalloxazine ring, may play a role in the stabilization of the anionic semiquinone. With the known structure of medium chain acyl-CoA dehydrogenase, we hypothesize a possible structure for docking the two proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the construction of a safe, replication-defective and efficient lentiviral vector suitable for in vivo gene delivery. The reverse transcription of the vector was found to be a rate-limiting step; therefore, promoting the reaction inside the vector particles before delivery significantly enhanced the efficiency of gene transfer. After injection into the brain of adult rats, sustained long-term expression of the transgene was obtained in the absence of detectable pathology. A high proportion of the neurons in the areas surrounding the injection sites of the vector expressed the transduced beta-galactosidase gene. This pattern was invariant in animals sacrificed several months after a single administration of the vector. Transduction occurs by integration of the vector genome, as it was abolished by a single amino acid substitution in the catalytic site of the integrase protein incorporated in the vector. Development of clinically acceptable derivatives of the lentiviral vector may thus enable the sustained delivery of significant amounts of a therapeutic gene product in a wide variety of somatic tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumors express peptide antigens capable of being recognized by tumor-specific cytotoxic T lymphocytes (CTL). Immunization of mice with a carcinogen-induced colorectal tumor, CT26, engineered to secrete granulocyte/macrophage colony-stimulating factor, routinely generated both short-term and long-term CTL lines that not only lysed the parental tumor in vitro, but also cured mice of established tumor following adoptive transfer in vivo. When either short-term or long-term CTL lines were used to screen peptides isolated from CT26, one reverse-phase high performance liquid chromatography peptide fraction consistently sensitized a surrogate target for specific lysis. The bioactivity remained localized within one fraction following multiple purification procedures, indicating that virtually all of the CT26-specific CTL recognized a single peptide. This result contrasts with other tumor systems, where multiple bioactive peptide fractions have been detected. The bioactive peptide was identified as a nonmutated nonamer derived from the envelope protein (gp70) of an endogenous ecotropic murine leukemia provirus. Adoptive transfer with CTL lines specific for this antigen demonstrated that this epitope represents a potent tumor rejection antigen. The selective expression of this antigen in multiple non-viral-induced tumors provides evidence for a unique class of shared immunodominant tumor associated antigens as targets for antitumor immunity.