14 resultados para prodrug pharmacokinetics

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the RIα subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of 35S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIα subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current recommended dietary allowance (RDA) for vitamin C, as proposed by the Food and Nutrition Board/National Research Council in 1980 and reconfirmed in 1989, is 60 mg daily for nonsmoking adult males. Levine et al. [Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R. W., Washko, P. W., et al. (1996) Proc. Natl. Acad. Sci. USA 93, 3704–3709], based on a study of vitamin C pharmacokinetics in seven healthy men, have now proposed that the RDA should be increased to 200 mg daily. I have examined, in brief, the experimental and conceptual bases for this new recommendation and its implications for public health and nutrition policy and programs. Using, for illustrative purposes only, data extracted from each of two recent dietary surveys of noninstitutionalized adult males living in households in the Netherlands and the United States, it is predicted that the prevalence of intakes inadequate to meet the individual’s own requirement would be about 96% or 84%, respectively, if the criteria of adequacy used for derivation of the 200 mg RDA are accepted. Depending upon the particular average requirement value for ascorbic acid that might be derived from their data, the proposal by Levine et al. would mean a desirable increase in mean intakes in these two populations by as much about 2- to 3-fold. Hence, before an action of this kind is to be recommended, an answer must be sought to the question whether current experimental data including the criteria selected (saturation kinetics) are adequate to establish a new set of requirements for vitamin C, which then carry such profound policy implications. This will require critical assessment of all of the available evidence emerging from laboratory, clinical, and epidemiological studies to determine whether it provides a sufficient rationale for accepting criteria of vitamin C adequacy such as those proposed by Levine et al. and the requirement estimates so derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective chemotherapy remains a key issue for successful cancer treatment in general and neuroblastoma in particular. Here we report a chemotherapeutic strategy based on catalytic antibody-mediated prodrug activation. To study this approach in an animal model of neuroblastoma, we have synthesized prodrugs of etoposide, a drug widely used to treat this cancer in humans. The prodrug incorporates a trigger portion designed to be released by sequential retro-aldol/retro-Michael reactions catalyzed by aldolase antibody 38C2. This unique prodrug was greater than 102-fold less toxic than etoposide itself in in vitro assays against the NXS2 neuroblastoma cell line. Drug activity was restored after activation by antibody 38C2. Proof of principle for local antibody-catalyzed prodrug activation in vivo was established in a syngeneic model of murine neuroblastoma. Mice with established 100-mm3 s.c. tumors who received one intratumoral injection of antibody 38C2 followed by systemic i.p. injections with the etoposide prodrug showed a 75% reduction in s.c. tumor growth. In contrast, injection of either antibody or prodrug alone had no antitumor effect. Systemic injections of etoposide at the maximum tolerated dose were significantly less effective than the intratumoral antibody 38C2 and systemic etoposide prodrug combination. Significantly, mice treated with the prodrug at 30-fold the maximum tolerated dose of etoposide showed no signs of prodrug toxicity, indicating that the prodrug is not activated by endogenous enzymes. These results suggest that this strategy may provide a new and potentially nonimmunogenic approach for targeted cancer chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determinants of the recommended dietary allowance (RDA) for vitamin C include the relationship between vitamin C dose and steady-state plasma concentration, bioavailability, urinary excretion, cell concentration, and potential adverse effects. Because current data are inadequate, an in-hospital depletion-repletion study was conducted. Seven healthy volunteers were hospitalized for 4-6 months and consumed a diet containing <5 mg of vitamin C daily. Steady-state plasma and tissue concentrations were determined at seven daily doses of vitamin C from 30 to 2500 mg. Vitamin C steady-state plasma concentrations as a function of dose displayed sigmoid kinetics. The steep portion of the curve occurred between the 30- and 100-mg daily dose, the current RDA of 60 mg daily was on the lower third of the curve, the first dose beyond the sigmoid portion of the curve was 200 mg daily, and complete plasma saturation occurred at 1000 mg daily. Neutrophils, monocytes, and lymphocytes saturated at 100 mg daily and contained concentrations at least 14-fold higher than plasma. Bioavailability was complete for 200 mg of vitamin C as a single dose. No vitamin C was excreted in urine of six of seven volunteers until the 100-mg dose. At single doses of 500 mg and higher, bioavailability declined and the absorbed amount was excreted. Oxalate and urate excretion were elevated at 1000 mg of vitamin C daily compared to lower doses. Based on these data and Institute of Medicine criteria, the current RDA of 60 mg daily should be increased to 200 mg daily, which can be obtained from fruits and vegetables. Safe doses of vitamin C are less than 1000 mg daily, and vitamin C daily doses above 400 mg have no evident value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody-directed enzyme prodrug therapy, ADEPT, is a recent approach to targeted cancer chemotherapy intended to diminish the nonspecific toxicity associated with many commonly used chemotherapeutic agents. Most ADEPT systems incorporate a bacterial enzyme, and thus their potential is reduced because of the immunogenicity of that component of the conjugate. This limitation can be circumvented by the use of a catalytic antibody, which can be "humanized," in place of the bacterial enzyme catalyst. We have explored the scope of such antibody-directed "abzyme" prodrug therapy, ADAPT, to evaluate the potential for a repeatable targeted cancer chemotherapy. We report the production of a catalytic antibody that can hydrolyze the carbamate prodrug 4-[N,N-bis(2-chloroethyl)]aminophenyl-N-[(1S)-(1,3- dicarboxy)propyl]carbamate (1) to generate the corresponding cytotoxic nitrogen mustard (Km = 201 microM, kcat = 1.88 min-1). In vitro studies with this abzyme, EA11-D7, and prodrug 1 lead to a marked reduction in viability of cultured human colonic carcinoma (LoVo) cells relative to appropriate controls. In addition, we have found a good correlation between antibody catalysis as determined by this cytotoxicity assay in vitro and competitive binding studies of candidate abzymes to the truncated transition-state analogue ethyl 4-nitrophenylmethylphosphonate. This cell-kill assay heralds a general approach to direct and rapid screening of antibody libraries for catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correlation between telomerase activity and human tumors has led to the hypothesis that tumor growth requires reactivation of telomerase and that telomerase inhibitors represent a class of chemotherapeutic agents. Herein, we examine the effects of inhibition of telomerase inside human cells. Peptide nucleic acid and 2′-O-MeRNA oligomers inhibit telomerase, leading to progressive telomere shortening and causing immortal human breast epithelial cells to undergo apoptosis with increasing frequency until no cells remain. Telomere shortening is reversible: if inhibitor addition is terminated, telomeres regain their initial lengths. Our results validate telomerase as a target for the discovery of anticancer drugs and supply general insights into the properties that successful agents will require regardless of chemical type. Chemically similar oligonucleotides are in clinical trials and have well characterized pharmacokinetics, making the inhibitors we describe practical lead compounds for testing for an antitelomerase chemotherapeutic strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzymatic defect results in the accumulation of the glycosphingolipid globotriaosylceramide (Gb3; also referred to as ceramidetrihexoside) throughout the body. To investigate the effects of purified α-gal A, 10 patients with Fabry disease received a single i.v. infusion of one of five escalating dose levels of the enzyme. The objectives of this study were: (i) to evaluate the safety of administered α-gal A, (ii) to assess the pharmacokinetics of i.v.-administered α-gal A in plasma and liver, and (iii) to determine the effect of this replacement enzyme on hepatic, urine sediment and plasma concentrations of Gb3. α-Gal A infusions were well tolerated in all patients. Immunohistochemical staining of liver tissue approximately 2 days after enzyme infusion identified α-gal A in several cell types, including sinusoidal endothelial cells, Kupffer cells, and hepatocytes, suggesting diffuse uptake via the mannose 6-phosphate receptor. The tissue half-life in the liver was greater than 24 hr. After the single dose of α-gal A, nine of the 10 patients had significantly reduced Gb3 levels both in the liver and shed renal tubular epithelial cells in the urine sediment. These data demonstrate that single infusions of α-gal A prepared from transfected human fibroblasts are both safe and biochemically active in patients with Fabry disease. The degree of substrate reduction seen in the study is potentially clinically significant in view of the fact that Gb3 burden in Fabry patients increases gradually over decades. Taken together, these results suggest that enzyme replacement is likely to be an effective therapy for patients with this metabolic disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

So324 is a 2',3'-dideoxy-2',3'-didehydrothymidine-5'-monophosphate (d4T-MP) prodrug containing at the phosphate moiety a phenyl group and the methylester of alanine linked to the phosphate through a phosphoramidate linkage. So324 has anti-HIV activity in human CEM, MT4, and monocyte/macrophage cells that is superior to that of d4T. In contrast to d4T, So324 is also able to inhibit HIV replication in thymidine kinase-deficient CEM cells. After uptake of So324 by intact human lymphocytes, d4T-MP is released and subsequently converted intracellularly to d4T-TP. In addition, accumulation of substantial amounts of a novel d4T derivative has been found. This d4T metabolite has been characterized as alaninyl d4T-MP. The latter metabolite accumulates at approximately 13- to 200-fold higher levels than d4T-TP depending the experimental conditions. Alaninyl d4T-MP should be considered as an intra- and/or extracellular depot form of d4T and/or d4T-MP. These findings may explain the superior anti-retroviral activity of So324 over d4T in cell culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic pathway damage similar to that observed in Parkinson disease (PD). To study the role of NO radical in MPTP-induced neurotoxicity, we injected MPTP into mice in which nitric oxide synthase (NOS) was inhibited by 7-nitroindazole (7-NI) in a time- and dose-dependent fashion. 7-NI dramatically protected MPTP-injected mice against indices of severe injury to the nigrostriatal dopaminergic pathway, including reduction in striatal dopamine contents, decreases in numbers of nigral tyrosine hydroxylase-positive neurons, and numerous silver-stained degenerating nigral neurons. The resistance of 7-NI-injected mice to MPTP is not due to alterations in striatal pharmacokinetics or content of 1-methyl-4-phenylpyridinium ion (MPP+), the active metabolite of MPTP. To study specifically the role of neuronal NOS (nNOS), MPTP was administered to mutant mice lacking the nNOS gene. Mutant mice are significantly more resistant to MPTP-induced neurotoxicity compared with wild-type littermates. These results indicate that neuronally derived NO mediates, in part, MPTP-induced neurotoxicity. The similarity between the MPTP model and PD raises the possibility that NO may play a significant role in the etiology of PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infectivity and replication of human (HIV-1), feline (FIV), and murine (LP-BM5) immunodeficiency viruses are all inhibited by several nucleoside analogues after intracellular conversion to their triphosphorylated derivatives. At the cellular level, the main problems in the use of these drugs concern their limited phosphorylation in some cells (e.g., macrophages) and the cytotoxic side effects of nucleoside analogue triphosphates. To overcome these limitations a new nucleoside analogue homodinucleotide, di(thymidine-3'-azido-2',3'-dideoxy-D-riboside)-5'-5'-p1-p2-pyrophosphat e (AZTp2AZT), was designed and synthesized. AZTp2AZT was a poor in vitro inhibitor of HIV reverse transcriptase, although it showed antiviral and cytotoxic activities comparable to those of the parent AZT when added to cultures of a HTLV-1 transformed cell line. AZTp2AZT encapsulated into erythrocytes was remarkably stable. Induction of erythrocyte-membrane protein clusterization and subsequent phagocytosis of AZTp2AZT-loaded cells allowed the targeted delivery of this impermeant drug to macrophages where its metabolic activation occurs. The addition of AZTp2AZT-loaded erythrocytes to human, feline, and murine macrophages afforded almost complete in vitro protection of these cells from infection by HIVBa-L, FIV, and LP-BM5, respectively. Therefore, AZTp2AZT, unlike the membrane-diffusing azidothymidine, acts as a very efficient antiretroviral prodrug following selective targeting to macrophages by means of loaded erythrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiolabeled antibodies have shown promise for the treatment of lymphoma and for solid tumor targeting. Campath-1H is a humanized monoclonal antibody that reacts with the CD52 antigen present on human lymphoid and myeloid cells. Campath-1H is a gamma1 (G1) isotype that induces lymphopenia via an Fc-mediated mechanism(s). Isotype switches were engineered, and the resulting antibodies were expressed in NS0 mouse myeloma cells and biosynthetically radiolabeled with [35S]methionine. The forms included G1, G4, and a G4 variant that contained alanine substitutions at (EU numbering) Leu-235, Gly-237, and Glu-318. All isotypes bound antigen equivalently as assessed by target cell binding in vitro. The G4 variant had a greatly reduced capacity to interact with Fc receptor by virtue of reduced binding to THP-1 human myeloid cells and by a 1000-fold increase in EC50 to intermediate antibody-dependent cellular cytotoxicity. The pharmacokinetics of the isotypes were compared in CD-1 (nu/nu) mice bearing an experimental antigen-expressing tumor. The plasma half-life and tumor uptake were increased for the G4 variant. The G4 variant showed significantly less spleen, liver, and bone uptake but similar uptake in the lung, kidney, and stomach and lower tissue-to-blood ratios. Immunogenicity was assessed after repeated monthly administrations of unlabeled antibody in BALB/c mice. A 50% reduction in the incidence of anti-globulin response was observed for the G4 variant. These properties suggest that antibodies with reduced Fc receptor interaction merit additional study as potential targeting vehicles relative to other isotypes for radioimmunotherapy or situations where diminished normal tissue binding contributes to efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Examination of the structural basis for antiviral activity, oral pharmacokinetics, and hepatic metabolism among a series of symmetry-based inhibitors of the human immunodeficiency virus (HIV) protease led to the discovery of ABT-538, a promising experimental drug for the therapeutic intervention in acquired immunodeficiency syndrome (AIDS). ABT-538 exhibited potent in vitro activity against laboratory and clinical strains of HIV-1 [50% effective concentration (EC50) = 0.022-0.13 microM] and HIV-2 (EC50 = 0.16 microM). Following a single 10-mg/kg oral dose, plasma concentrations in rat, dog, and monkey exceeded the in vitro antiviral EC50 for > 12 h. In human trials, a single 400-mg dose of ABT-538 displayed a prolonged absorption profile and achieved a peak plasma concentration in excess of 5 micrograms/ml. These findings demonstrate that high oral bioavailability can be achieved in humans with peptidomimetic inhibitors of HIV protease.