3 resultados para process theory

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fourier transform-infrared/statistics models demonstrate that the malignant transformation of morphologically normal human ovarian and breast tissues involves the creation of a high degree of structural modification (disorder) in DNA, before restoration of order in distant metastases. Order–disorder transitions were revealed by methods including principal components analysis of infrared spectra in which DNA samples were represented by points in two-dimensional space. Differences between the geometric sizes of clusters of points and between their locations revealed the magnitude of the order–disorder transitions. Infrared spectra provided evidence for the types of structural changes involved. Normal ovarian DNAs formed a tight cluster comparable to that of normal human blood leukocytes. The DNAs of ovarian primary carcinomas, including those that had given rise to metastases, had a high degree of disorder, whereas the DNAs of distant metastases from ovarian carcinomas were relatively ordered. However, the spectra of the metastases were more diverse than those of normal ovarian DNAs in regions assigned to base vibrations, implying increased genetic changes. DNAs of normal female breasts were substantially disordered (e.g., compared with the human blood leukocytes) as were those of the primary carcinomas, whether or not they had metastasized. The DNAs of distant breast cancer metastases were relatively ordered. These findings evoke a unified theory of carcinogenesis in which the creation of disorder in the DNA structure is an obligatory process followed by the selection of ordered, mutated DNA forms that ultimately give rise to metastases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a unifying theory of hypoxia tolerance based on information from two cell level models (brain cortical cells and isolated hepatocytes) from the highly anoxia tolerant aquatic turtle and from other more hypoxia sensitive systems. We propose that the response of hypoxia tolerant systems to oxygen lack occurs in two phases (defense and rescue). The first lines of defense against hypoxia include a balanced suppression of ATP-demand and ATP-supply pathways; this regulation stabilizes (adenylates) at new steady-state levels even while ATP turnover rates greatly decline. The ATP demands of ion pumping are down-regulated by generalized "channel" arrest in hepatocytes and by "spike" arrest in neurons. Hypoxic ATP demands of protein synthesis are down-regulated probably by translational arrest. In hypoxia sensitive cells this translational arrest seems irreversible, but hypoxia-tolerant systems activate "rescue" mechanisms if the period of oxygen lack is extended by preferentially regulating the expression of several proteins. In these cells, a cascade of processes underpinning hypoxia rescue and defense begins with an oxygen sensor (a heme protein) and a signal-transduction pathway, which leads to significant gene-based metabolic reprogramming-the rescue process-with maintained down-regulation of energy-demand and energy-supply pathways in metabolism throughout the hypoxic period. This recent work begins to clarify how normoxic maintenance ATP turnover rates can be drastically (10-fold) down-regulated to a new hypometabolic steady state, which is prerequisite for surviving prolonged hypoxia or anoxia. The implications of these developments are extensive in biology and medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For almost a century, events relating to the evolutionary origin of endosperm, a unique embryo-nourishing tissue that is essential to the reproductive process in flowering plants, have remained a mystery. Integration of recent advances in phylogenetic reconstruction, comparative reproductive biology, and genetic theory can be used to elucidate the evolutionary events and forces associated with the establishment of endosperm. Endosperm is shown to be derived from one of two embryos formed during a rudimentary process of "double fertilization" that evolved in the ancestors of angiosperms. Acquisition of embryo-nourishing behavior (with accompanying loss of individual fitness) by this supernumerary fertilization product was dependent upon compensatory gains in the inclusive fitness of related embryos. The result of the loss of individual fitness by one of the two original products of double fertilization was the establishment of endosperm, a highly modified embryo/organism that reproduces cryptically through behavior that enhances the fitness of its associated embryo within a seed. Finally, although triploid endosperm remains a synapomorphy of angiosperms, inclusive fitness analysis demonstrates that the embryo-nourishing properties of endosperm initially evolved in a diploid condition.