27 resultados para prey development stage

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed a comprehensive analysis of T cell receptor (TCR) γ rearrangements in T cell precursors of the mouse adult thymus. Using a sensitive quantitative PCR method, we show that TCRγ rearrangements are present in CD44+CD25+ Pro-T thymocytes much earlier than expected. TCRγ rearrangements increase significantly from the Pro-T to the CD44−CD25+ Pre-T cell transition, and follow different patterns depending on each Vγ gene segment, suggesting that ordered waves of TCRγ rearrangement exist in the adult mouse thymus as has been described in the fetal mouse thymus. Recombinations of TCRγ genes occur concurrently with TCRδ and D-Jβ rearrangements, but before Vβ gene assembly. Productive TCRγ rearrangements do not increase significantly before the Pre-T cell stage and are depleted in CD4+CD8+ double-positive cells from normal mice. In contrast, double-positive thymocytes from TCRδ−/− mice display random proportions of TCRγ rearranged alleles, supporting a role for functional TCRγ/δ rearrangements in the γδ divergence process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) is associated with several classes of plasma lipoproteins and mediates uptake of lipoproteins through its ability to interact with specific cell surface receptors. Besides its role in cardiovascular diseases, accumulating evidence has suggested that apoE could play a role in neurodegenerative diseases, such as Alzheimer disease. In vertebrates, apoA-I is the major protein of high-density lipoprotein. ApoA-I may play an important role in regulating the cholesterol content of peripheral tissues through the reverse cholesterol transport pathway. We have isolated cDNA clones that code for apoE and apoA-I from a zebrafish embryo library. Analysis of the deduced amino acid sequences showed the presence of a region enriched in basic amino acids in zebrafish apoE similar to the lipoprotein receptor-binding region of human apoE. We demonstrated by whole-mount in situ hybridization that apoE and apoA-I genes are highly expressed in the yolk syncytial layer, an extraembryonic structure implicated in embryonic and larval nutrition. ApoE transcripts were also observed in the deep cell layer during blastula stage, in numerous ectodermal derivatives after gastrulation, and after 3 days of development in a limited number of cells both in brain and in the eyes. Our data indicate that apoE can be found in a nonmammalian vertebrate and that the duplication events, from which apoE and apoA-I genes arose, occurred before the divergence of the tetrapod and teleost ancestors. Zebrafish can be used as a simple and useful model for studying the role of apolipoproteins in embryonic and larval nutrition and of apoE in brain morphogenesis and regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of exogenous retinoic acid (RA) to zebrafish during the initial stages of photoreceptor differentiation results in a precocious development of rod photoreceptors and an inhibition of cone photoreceptor maturation. The acceleration of rod differentiation is observed initially within the ventral retina 3 days after fertilization, following 24 hr of RA application, and within the dorsal retina 4 days after fertilization, following 48 hr of RA application. The differentiation of rods was impeded significantly when the synthesis of endogenous retinoic acid was inhibited by citral prior to the initial stage of rod differentiation. RA-treated embryos labeled for bromodeoxyuridine (BrdU) uptake revealed that RA exerts its effect on a postmitotic cell population within the developing retina. During normal development in zebrafish, rod differentiation is most robust within the ventral retina, a region previously shown to be rich in RA. Our data suggest that the RA signaling pathway is involved in the differentiation and maturation of both the rod and cone photoreceptors within the developing zebrafish retina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exogenous thyroid hormone (TH) induces premature differentiation of the zebrafish pectoral fins, which are analogous to the forelimbs of tetrapods. It accelerates the growth of the pelvic fins but not precociously. Goitrogens, which are chemical inhibitors of TH synthesis by the thyroid gland, inhibit the transition from larva to juvenile fish including the formation of scales, and pigment pattern; they stunt the growth of both pectoral and pelvic paired fins. Inhibition by goitrogens is rescued by the simultaneous addition of thyroxine. The effect of adding TH to the rearing water of the postembryonic Mexican axolotl was reinvestigated under conditions that permit continued growth and development. In addition to morphological changes that have been described, TH greatly stimulates axolotl limb growth causing the resulting larva to be proportioned as an adult in about two months. This study extends the known evolutionary relatedness of tetrapod limbs and fish fins to include the TH stimulation of salamander limb and zebrafish fin growth, and suggests that TH is required to complete the life cycle of a typical bony fish and a salamander at the same developmental stage that it controls anuran and flounder metamorphosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microrchidia, or morc, autosomal recessive mutation results in the arrest of spermatogenesis early in prophase I of meiosis. The morc mutation arose spontaneously during the development of a mouse strain transgenic for a tyrosinase cDNA construct. Morc −/− males are infertile and have grossly reduced testicular mass, whereas −/− females are normal, indicating that the Morc gene acts specifically during male gametogenesis. Immunofluorescence to synaptonemal complex antigens demonstrated that −/− male germ cells enter meiosis but fail to progress beyond zygotene or leptotene stage. An apoptosis assay revealed massive numbers of cells undergoing apoptosis in testes of −/− mice. No other abnormal phenotype was observed in mutant animals, with the exception of eye pigmentation caused by transgene expression in the retina. Spermatogenesis is normal in +/− males, despite significant transgene expression in germ cells. Genomic analysis of −/− animals indicates the presence of a deletion adjacent to the transgene. Identification of the gene inactivated by the transgene insertion may define a novel biochemical pathway involved in mammalian germ cell development and meiosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell antigen receptor (TCR) and pre-TCR complexes are composed of clonotypic heterodimers in association with dimers of signal transducing invariant subunits (CD3γ, -δ, -ɛ, and ζ). The role of individual invariant subunits in T cell development has been investigated by generating gene-specific mutations in mice. Mutation of CD3γ, -δ, or ζ results in an incomplete block in development, characterized by reduced numbers of mature T cells that express low levels of TCR. In contrast, mature T cells are absent from CD3ɛ−/− mice, and thymocyte development is arrested at the early CD4−CD8− stage. Although these results suggest that CD3ɛ is essential for pre-TCR and TCR expression/function, their interpretation is complicated by the fact that expression of the CD3γ and CD3δ genes also is reduced in CD3ɛ−/− mice. Thus, it is unclear whether the phenotype of CD3ɛ−/− mice reflects the collective effects of CD3γ, -δ, and -ɛ deficiency. By removing the selectable marker (PGK-NEO) from the targeted CD3ɛ gene via Cre/loxP-mediated recombination, we generated mice that lack CD3ɛ yet retain normal expression of the closely linked CD3γ and CD3δ genes. These (CD3ɛΔ/Δ) mice exhibited an early arrest in T cell development, similar to that of CD3ɛ−/− mice. Moreover, the developmental defect could be rescued by expression of a CD3ɛ transgene. These results identify an essential role for CD3ɛ in T cell development not shared by the CD3γ, CD3δ, or ζ-family proteins and provide further evidence that PGK-NEO can influence the expression of genes in its proximity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of a common precursor for endothelial and hemopoietic cells, termed the hemangioblast, has been postulated since the beginning of the century. Recently, deletion of the endothelial-specific vascular endothelial growth factor receptor 2 (VEGFR2) by gene targeting has shown that both endothelial and hemopoietic cells are absent in homozygous null mice. This observation suggested that VEGFR2 could be expressed by the hemangioblast and essential for its further differentiation along both lineages. However, it was not possible to exclude the hypothesis that hemopoietic failure was a secondary effect resulting from the absence of an endothelial cell microenvironment. To distinguish between these two hypotheses, we have produced a mAb directed against the extracellular domain of avian VEGFR2 and isolated VEGFR2+ cells from the mesoderm of chicken embryos at the gastrulation stage. We have found that in clonal cultures, a VEGFR2+ cell gives rise to either a hemopoietic or an endothelial cell colony. The developmental decision appears to be regulated by the binding of two different VEGFR2 ligands. Thus, endothelial differentiation requires VEGF, whereas hemopoietic differentiation occurs in the absence of VEGF and is significantly reduced by soluble VEGFR2, showing that this process could be mediated by a second, yet unidentified, VEGFR2 ligand. These observations thus suggest strongly that in the absence of the VEGFR2 gene product, the precursors of both hemopoietic and vascular endothelial lineages cannot survive. These cells therefore might be the initial targets of the VEGFR2 null mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immature CD4+CD8+ thymocytes expressing T-cell antigen receptors (TCR) are selected by TCR-mediated recognition of peptides associated with major histocompatibility complex molecules on thymic stromal cells. Selection ensures reactivity of the mature cells to foreign antigens and tolerance to self. Although much has been learned about the factors that determine whether a thymocyte with a given specificity will be positively or negatively selected, selection as an aspect of the developmental process as a whole is less well-understood. Here we invoke a model in which thymocytes tune their response characteristics individually and dynamically in the course of development. Cellular development and selection are driven by receptor-mediated metabolic perturbations. Perturbation is a measure of the net intracellular change induced by external stimulation. It results from the integration of several signals and countersignals over time and therefore depends on the environment and the maturation stage of the cell. Individual cell adaptation limits the range of perturbations. Such adaptation renders thymocytes less sensitive to the level of stimulation per se, but responsive to environmental changes in that level. This formulation begins to explain the mechanisms that link developmental and selection events to each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterochrony, the relative change of developmental timing, is one of the major modes of macroevolutionary change; it identifies temporally disassociated units of developmental evolution. Here, we report the results of a fine-scale temporal study for the expression of the developmental gene hairy and morphological development in three species of Drosophila, D. melanogaster, D. simulans, and D. pseudoobscura. The results suggest that between and among closely related species, temporal displacement of ontogenetic trajectory is detected even at the earliest stage of development. Overall, D. simulans shows the earliest expression, followed by D. melanogaster, and then by D. pseudoobscura. Setting D. melanogaster as the standard, we find the approximate time to full expression is accelerated by 13 min, 48 s in D. simulans and retarded by 24 min in D. pseudoobscura. Morphologically, again with D. melanogaster setting the standard, initiation of cellularization is faster in D. simulans by 15 min, 42 s; and initiation of morphogenesis is faster in D. simulans by 18 min, 7 s. These results seem to be consistent with the finding that the approximate time to full expression of hairy is accelerated by 13 min, 48 s in D. simulans. On the other hand, the same morphological events are delayed by 5 min, 32 s, and by 11 min, 32 s, respectively, in D. pseudoobscura. These delays are small, compared with the 24-min delay in full expression. The timing changes, in total, seem consistent with continuous phyletic evolution of temporal trajectories. Finally, we speculate that epigenetic interactions of hairy expression timing and cell-cycle timing may have led to morphological differences in the terminal system of the larvae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human preimplantation embryos exhibit high levels of apoptotic cells and high rates of developmental arrest during the first week in vitro. The relation between the two is unclear and difficult to determine by conventional experimental approaches, partly because of limited numbers of embryos. We apply a mixture of experiment and mathematical modeling to show that observed levels of cell death can be reconciled with the high levels of embryo arrest seen in the human only if the developmental competence of embryos is already established at the zygote stage, and environmental factors merely modulate this. This suggests that research on improving in vitro fertilization success rates should move from its current concentration on optimizing culture media to focus more on the generation of a healthy zygote and on understanding the mechanisms that cause chromosomal and other abnormalities during early cleavage stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Profilins are thought to play a central role in the regulation of de novo actin assembly by preventing spontaneous actin polymerization through the binding of actin monomers, and the adding of monomeric actin to the barbed actin-filament ends. Other cellular functions of profilin in membrane trafficking and lipid based signaling are also likely. Binding of profilins to signaling molecules such as Arp2/3 complex, Mena, VASP, N-WASP, dynamin I, and others, further implicates profilin and actin as regulators of diverse motile activities. In mouse, two profilins are expressed from two distinct genes. Profilin I is expressed at high levels in all tissues and throughout development, whereas profilin II is expressed in neuronal cells. To examine the function of profilin I in vivo, we generated a null profilin I (pfn1ko) allele in mice. Homozygous pfn1ko/ko mice are not viable. Pfn1ko/ko embryos died as early as the two-cell stage, and no pfn1ko/ko blastocysts were detectable. Adult pfn1ko/wt mice show a 50% reduction in profilin I expression with no apparent impairment of cell function. However, pfn1ko/wt embryos have reduced survival during embryogenesis compared with wild type. Although weakly expressed in early embryos, profilin II cannot compensate for lack of profilin I. Our results indicate that mouse profilin I is an essential protein that has dosage-dependent effects on cell division and survival during embryogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FADD/Mort1, initially identified as a Fas-associated death-domain containing protein, functions as an adapter molecule in apoptosis initiated by Fas, tumor necrosis factor receptor-I, DR3, and TRAIL-receptors. However, FADD likely participates in additional signaling cascades. FADD-null mutations in mice are embryonic-lethal, and analysis of FADD−/− T cells from RAG-1−/− reconstituted chimeras has suggested a role for FADD in proliferation of mature T cells. Here, we report the generation of T cell-specific FADD-deficient mice via a conditional genomic rescue approach. We find that FADD-deficiency leads to inhibition of T cell development at the CD4−CD8− stage and a reduction in the number of mature T cells. The FADD mutation does not affect apoptosis or the proximal signaling events of the pre-T cell receptor; introduction of a T cell receptor transgene fails to rescue the mutant phenotype. These data suggest that FADD, through either a death-domain containing receptor or a novel receptor-independent mechanism, is required for the proliferative phase of early T cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major therapeutic target in the search for a cure to the devastating Alzheimer's disease is γ-secretase. This activity resides in a multiprotein enzyme complex responsible for the generation of Aβ42 peptides, precipitates of which are thought to cause the disease. γ-Secretase is also a critical component of the Notch signal transduction pathway; Notch signals regulate development and differentiation of adult self-renewing cells. This has led to the hypothesis that therapeutic inhibition of γ-secretase may interfere with Notch-related processes in adults, most alarmingly in hematopoiesis. Here, we show that application of γ-secretase inhibitors to fetal thymus organ cultures interferes with T cell development in a manner consistent with loss or reduction of Notch1 function. Progression from an immature CD4−/CD8− state to an intermediate CD4+/CD8+ double-positive state was repressed. Furthermore, treatment beginning later at the double-positive stage specifically inhibited CD8+ single-positive maturation but did not affect CD4+ single-positive cells. These results demonstrate that pharmacological γ-secretase inhibition recapitulates Notch1 loss in a vertebrate tissue and present a system in which rapid evaluation of γ-secretase-targeted pharmaceuticals for their ability to inhibit Notch activity can be performed in a relevant context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA.