2 resultados para preliminary discovery
em National Center for Biotechnology Information - NCBI
Resumo:
Recent discovery of crania, dentitions, and postcrania of a primitive anthropoidean primate, Proteopithecus sylviae, at the late Eocene L-4l quarry in the Fayum, Egypt, provides evidence of a new taxonomic family of early African higher primates, the Proteopithecidae. This family could be part of the basal radiation that produced the New World platyrrhine primates, or it could be unrelated to any subsequent lineages. Although no larger than a small callitrichid or a dwarf lemur, this tiny primate already possessed many of the derived features of later anthropoids and was a diurnal and probably dimorphic species. In dental formula and other dental proportions, as well as in known postcranial features, Proteopithecus more nearly resembles platyrrhines than does any other Old World higher primate. The small size of the Proteopithecus cranium demonstrates that the defining cranial characteristics of Anthropoidea did not arise as a consequence of an increase in size during derivation from earlier prosimians.
Resumo:
Volemitol (d-glycero-d-manno-heptitol, α-sedoheptitol) is an unusual seven-carbon sugar alcohol that fulfills several important physiological functions in certain species of the genus Primula. Using the horticultural hybrid polyanthus (Primula × polyantha) as our model plant, we found that volemitol is the major nonstructural carbohydrate in leaves of all stages of development, with concentrations of up to 50 mg/g fresh weight in source leaves (about 25% of the dry weight), followed by sedoheptulose (d-altro-2-heptulose, 36 mg/g fresh weight), and sucrose (4 mg/g fresh weight). Volemitol was shown by the ethylenediaminetetraacetate-exudation technique to be a prominent phloem-mobile carbohydrate. It accounted for about 24% (mol/mol) of the phloem sap carbohydrates, surpassed only by sucrose (63%). Preliminary 14CO2 pulse-chase radiolabeling experiments showed that volemitol was a major photosynthetic product, preceded by the structurally related ketose sedoheptulose. Finally, we present evidence for a novel NADPH-dependent ketose reductase, tentatively called sedoheptulose reductase, in volemitol-containing Primula species, and propose it as responsible for the biosynthesis of volemitol in planta. Using enzyme extracts from polyanthus leaves, we determined that sedoheptulose reductase has a pH optimum between 7.0 and 8.0, a very high substrate specificity, and displays saturable concentration dependence for both sedoheptulose (apparent Km = 21 mm) and NADPH (apparent Km = 0.4 mm). Our results suggest that volemitol is important in certain Primula species as a photosynthetic product, phloem translocate, and storage carbohydrate.