31 resultados para potato seed

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term aging of potato (Solanum tuberosum) seed-tubers resulted in a loss of patatin (40 kD) and a cysteine-proteinase inhibitor, potato multicystatin (PMC), as well as an increase in the activities of 84-, 95-, and 125-kD proteinases. Highly active, additional proteinases (75, 90, and 100 kD) appeared in the oldest tubers. Over 90% of the total proteolytic activity in aged tubers was sensitive to trans-epoxysuccinyl-l-leucylamido (4-guanidino) butane or leupeptin, whereas pepstatin was the most effective inhibitor of proteinases in young tubers. Proteinases in aged tubers were also inhibited by crude extracts or purified PMC from young tubers, suggesting that the loss of PMC was responsible for the age-induced increase in proteinase activity. Nonenzymatic oxidation, glycation, and deamidation of proteins were enhanced by aging. Aged tubers developed “daughter” tubers that contained 3-fold more protein than “mother” tubers, with a polypeptide profile consistent with that of young tubers. Although PMC and patatin were absent from the older mother tubers, both proteins were expressed in the daughter tubers, indicating that aging did not compromise the efficacy of genes encoding PMC and patatin. Unlike the mother tubers, proteinase activity in daughter tubers was undetectable. Our results indicate that tuber aging nonenzymatically modifies proteins, which enhances their susceptibility to breakdown; we also identify a role for PMC in regulating protein turnover in potato tubers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3' to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of improving the nutritive value of an important grain legume crop, a chimeric gene specifying seed-specific expression of a sulfur-rich, sunflower seed albumin was stably transformed into narrow-leafed lupin (Lupinus angustifolius L.). Sunflower seed albumin accounted for 5% of extractable seed protein in a line containing a single tandem insertion of the transferred DNA. The transgenic seeds contained less sulfate and more total amino acid sulfur than the nontransgenic parent line. This was associated with a 94% increase in methionine content and a 12% reduction in cysteine content. There was no statistically significant change in other amino acids or in total nitrogen or total sulfur contents of the seeds. In feeding trials with rats, the transgenic seeds gave statistically significant increases in live weight gain, true protein digestibility, biological value, and net protein utilization, compared with wild-type seeds. These findings demonstrate the feasibility of using genetic engineering to improve the nutritive value of grain crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diploid (2n = 2x = 24) Solanum species with endosperm balance number (EBN) = 1 are sexually isolated from diploid 2EBN species and both tetraploid (2n = 4x = 48, 4EBN) and haploid (2n = 2x = 24, 2EBN) S. tuberosum Group Tuberosum. To sexually overcome these crossing barriers in the diploid species S. commersonii (1EBN), the manipulation of the EBN was accomplished by scaling up and down ploidy levels. Triploid F1 hybrids between an in vitro-doubled clone of S. commersonii (2n = 4x = 48, 2EBN) and diploid 2EBN clones were successfully used in 3x × 4x crosses with S. tuberosum Group Tuberosum, resulting in pentaploid/near pentaploid BC1 progenies. This provided evidence of 2n (3x) egg formation in the triploid female parents. Two selected BC1 pentaploid hybrids were successfully backcrossed both as male and as female parents with S. tuberosum Group Tuberosum. The somatic chromosome number varied greatly among the resulting BC2 progenies, which included hyperaneuploids, but also a number (4.8%) of 48-chromosome plants. The introgression of S. commersonii genomes was confirmed by the presence of S. commersonii-specific randomly amplified polymorphic DNA markers in the BC2 population analyzed. The results clearly demonstrate the feasibility of germplasm introgression from sexually isolated diploid 1EBN species into the 4x (4EBN) gene pool of the cultivated potato using sexual hybridization. Based on the amount and type of genetic variation generated, cumbersomeness, general applicability, costs, and other factors, it would be interesting to compare the approach reported here with other in vitro or in vivo, direct or indirect, approaches previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hammerhead ribozyme [R(-)] targeting the minus strand RNA of potato spindle tuber viroid (PSTVd) and a mutated nonfunctional ribozyme [mR(-)] were designed, cloned, and transcribed. As predicted, both monomer and dimer transcripts of the active R(-) ribozyme gene could cleave the PSTVd minus strand dimer RNA into three fragments of 77, 338, and 359 bases in vitro at 25 and 50°C. The tandem dimer genes of R(-) and mR(-) were subcloned separately into the plant expression vector pROK2. Transgenic potato plants (cultivar Desirée) were generated by Agrobacterium tumefaciens-mediated transformation. Twenty-three of 34 independent transgenic plant lines expressing the active ribozyme R(-) resulted in having high levels of resistance to PSTVd, being free of PSTVd accumulation after challenge inoculation with PSTVd, but the remaining lines showed weaker levels of resistance to PSTVd with low levels of PSTVd accumulation. In contrast, 59 of 60 independent transgenic lines expressing the mutated ribozyme mR(-) were susceptible to PSTVd inoculation and had levels of PSTVd accumulation similar to that of the control plants transformed with the empty vector. The resistance against PSTVd replication was stably inherited to the vegetative progenies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to synthesize high molecular weight inulin was transferred to potato plants via constitutive expression of the 1-SST (sucrose:sucrose 1-fructosyltransferase) and the 1-FFT (fructan: fructan 1-fructosyltransferase) genes of globe artichoke (Cynara scolymus). The fructan pattern of tubers from transgenic potato plants represents the full spectrum of inulin molecules present in artichoke roots as shown by high-performance anion exchange chromatography, as well as size exclusion chromatography. These results demonstrate in planta that the enzymes sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase are sufficient to synthesize inulin molecules of all chain lengths naturally occurring in a given plant species. Inulin made up 5% of the dry weight of transgenic tubers, and a low level of fructan production also was observed in fully expanded leaves. Although inulin accumulation did not influence the sucrose concentration in leaves or tubers, a reduction in starch content occurred in transgenic tubers, indicating that inulin synthesis did not increase the storage capacity of the tubers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental goal of plant population ecology is to understand the consequences for plant fitness of seed dispersal by animals. Theories of seed dispersal and tropical forest regeneration suggest that the advantages of seed dispersal for most plants are escape from seed predation near the parent tree and colonization of vacant sites, the locations of which are unpredictable in space and time. Some plants may gain in fitness as a fortuitous consequence of disperser behavior if certain species of dispersers nonrandomly place seeds in sites predictably favorable for seedling establishment. Such patterns of directed dispersal by vertebrates long have been suggested but never demonstrated for tropical forest trees. Here we report the pattern of seed distribution and 1-year seedling survival generated by five species of birds for a neotropical, shade-tolerant tree. Four of the species dispersed seeds to sites near the parent trees with microhabitat characteristics similar to those at random locations, whereas the fifth species, a bellbird, predictably dispersed seeds under song perches in canopy gaps. The pattern of seedling recruitment was bimodal, with a peak near parent trees and a second peak, corresponding to bellbird song perches, far (>40 m) from parent trees. Seedling survival was higher for seeds dispersed by bellbirds than by the other species, because of a reduction in seedling mortality by fungal pathogens in gaps. Thus, bellbirds play a significant role in seed dispersal by providing directed dispersal to favorable sites and therefore may influence plant recruitment patterns and species diversity in Neotropical forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication of many viral and subviral pathogens as well as the amplification of certain cellular genes proceeds via a rolling circle mechanism. For potato spindle tuber (PSTVd) and related viroids, the possible role of a circular (−)strand RNA as a template for synthesis of (+)strand progeny is unclear. Infected plants appear to contain only multimeric linear (−)strand RNAs, and attempts to initiate infection with multimeric (−)PSTVd RNAs generally have failed. To examine critically the infectivity of monomeric (−)strand viroid RNAs, we have developed a ribozyme-based expression system for the production of precisely full length (−)strand RNAs whose termini are capable of undergoing facile circularization in vitro. Mechanical inoculation of tomato seedlings with electrophoretically purified (−)PSTVd RNA led to a small fraction of plants becoming infected whereas parallel assays with an analogous tomato planta macho viroid (−)RNA resulted in a much larger fraction of infected plants. Ribozyme-mediated production of (−)PSTVd RNA in transgenic plants led to the appearance of monomeric circular (−)PSTVd RNA and large amounts of (+)PSTVd progeny. No monomeric circular (−)PSTVd RNA could be detected in naturally infected plants by using either ribonuclease protection or electrophoresis under partially denaturing conditions. Although not a component of the normal replicative pathway, precisely full length (−)PSTVd RNA appears to contain all of the structural and regulatory elements necessary for initiation of viroid replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated α-glucans. Acid hydrolysis of the phosphorylated α-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potato (Solanum tuberosum L.) single-node explants undergoing in vitro tuberization produced detectable amounts of ethylene throughout tuber development, and the resulting microtubers were completely dormant (endodormant) for at least 12 to 15 weeks. The rate of ethylene production by tuberizing explants was highest during the initial 2 weeks of in vitro culture and declined thereafter. Continuous exposure of developing microtubers to the noncompetitive ethylene antagonist AgNO3 via the culture medium resulted in a dose-dependent increase in precocious sprouting. The effect of AgNO3 on the premature loss of microtuber endodormancy was observed after 3 weeks of culture. Similarly, continuous exposure of developing microtubers to the competitive ethylene antagonist 2,5-norbornadiene (NBD) at concentrations of 2 mL/L (gas phase) or greater also resulted in a dose-dependent increase in premature sprouting. Exogenous ethylene reversed this response and inhibited the precocious sprouting of NBD-treated microtubers. NBD treatment was effective only when it was begun within 7 d of the start of in vitro explant culture. These results indicate that endogenous ethylene is essential for the full expression of potato microtuber endodormancy, and that its involvement may be restricted to the initial period of endodormancy development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lysines (Lys) were determined to be involved in the regulation of the ADP-glucose (Glc) pyrophosphorylase from spinach leaf and the cyanobacterium Anabaena sp. PCC 7120 (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706–24711; Y. Charng, A.A. Iglesias, J. Preiss [1994] J Biol Chem 269: 24107–24113). Site-directed mutagenesis was used to investigate the relative roles of the conserved Lys in the heterotetrameric enzyme from potato (Solanum tuberosum L.) tubers. Mutations to alanine of Lys-404 and Lys-441 on the small subunit decreased the apparent affinity for the activator, 3-phosphoglycerate, by 3090- and 54-fold, respectively. The apparent affinity for the inhibitor, phosphate, decreased greater than 400-fold. Mutation of Lys-441 to glutamic acid showed even larger effects. When Lys-417 and Lys-455 on the large subunit were mutated to alanine, the phosphate inhibition was not altered and the apparent affinity for the activator decreased only 9- and 3-fold, respectively. Mutations of these residues to glutamic acid only decreased the affinity for the activator 12- and 5-fold, respectively. No significant changes were observed on other kinetic constants for the substrates ADP-Glc, pyrophosphate, and Mg2+. These data indicate that Lys-404 and Lys-441 on the small subunit are more important for the regulation of the ADP-Glc pyrophosphorylase than their homologous residues in the large subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During oil deposition in developing seeds of Arabidopsis, photosynthate is imported in the form of carbohydrates into the embryo and converted to triacylglycerols. To identify genes essential for this process and to investigate the molecular basis for the developmental regulation of oil accumulation, mutants producing wrinkled, incompletely filled seeds were isolated. A novel mutant locus, wrinkled1 (wri1), which maps to the bottom of chromosome 3 and causes an 80% reduction in seed oil content, was identified. Wild-type and homozygous wri1 mutant plantlets or mature plants were indistinguishable. However, developing homozygous wri1 seeds were impaired in the incorporation of sucrose and glucose into triacylglycerols, but incorporated pyruvate and acetate at an increased rate. Because the activities of several glycolytic enzymes, in particular hexokinase and pyrophosphate-dependent phosphofructokinase, are reduced in developing homozygous wri1 seeds, it is suggested that WRI1 is involved in the developmental regulation of carbohydrate metabolism during seed filling.