4 resultados para possible hydrothermal vents

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The coexistence of two phylogenetically distinct symbiont species within a single cell, a condition not previously known in any metazoan, is demonstrated in the gills of a Mid-Atlantic Ridge hydrothermal vent mussel (family Mytilidae). Large and small symbiont morphotypes within the gill bacteriocytes are shown to be separate bacterial species by molecular phylogenetic analysis and fluorescent in situ hybridization. The two symbiont species are affiliated with thioautotrophic and methanotrophic symbionts previously found in monospecific associations with closely related mytilids from deep-sea hydrothermal vents and hydrocarbon seeps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microbial community structure in natural environments has remained largely unexplored yet is generally considered to be complex. It is shown here that in a Mid-Atlantic Ridge hydrothermal vent habitat, where food webs depend on prokaryotic primary production, the surface microbial community consists largely of only one bacterial phylogenetic type (phylotype) as indicated by the dominance of a single 16S rRNA sequence. The main part of its population occurs as an ectosymbiont on the dominant animals, the shrimp Rimicaris exoculata, where it grows as a monoculture within the carapace and on the extremities. However, the same bacteria are also the major microbial component of the free-living substrate community. Phylogenetically, this type forms a distinct branch within the epsilon-Proteobacteria. This is different from all previously studied chemoautotrophic endo- and ectosymbioses from hydrothermal vents and other sulfidic habitats in which all the bacterial members cluster within the gamma-Proteobacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five extremely thermophilic Archaea from hydrothermal vents were isolated, and their DNA polymerases were cloned and expressed in Escherichia coli. Protein splicing elements (inteins) are present in many archaeal DNA polymerases, but only the DNA polymerase from strain GB-C contained an intein. Of the five cloned DNA polymerases, the Thermococcus sp. 9 degrees N-7 DNA polymerase was chosen for biochemical characterization. Thermococcus sp. 9 degrees N-7 DNA polymerase exhibited temperature-sensitive strand displacement activity and apparent Km values for DNA and dNTP similar to those of Thermococcus litoralis DNA polymerase. Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase. Five mutants resulted in no detectable 3'-5' exonuclease activity, while one mutant (Glul43Asp) had <1% of wild-type activity.