2 resultados para pore solution chemistry

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pKa of HNO is predicted to be 7.2 ± 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO− affects the rates of acid-base chemistry of the HNO/NO− couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (Keq = 6.9 × 10−5). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology for the construction of combinatorial libraries is described. The approach, termed dendrimer-supported combinatorial chemistry (DCC), centers on the use of dendrimers as soluble supports. Salient features of DCC include solution phase chemistry, homogeneous purification, routine characterization of intermediates, and high support loadings. To demonstrate the feasibility of DCC, single compounds and a small combinatorial library were prepared via the Fischer indole synthesis. Excellent product yields and purities were obtained, and dendrimer-protected intermediates could be routinely analyzed by 1H and 13C NMR and by mass spectrometry. The results indicate that DCC is a general and efficient strategy for the generation of combinatorial libraries.