8 resultados para porcine spine
em National Center for Biotechnology Information - NCBI
Resumo:
The function of dendritic spines, postsynaptic sites of excitatory input in the mammalian central nervous system (CNS), is still not well understood. Although changes in spine morphology may mediate synaptic plasticity, the extent of basal spine motility and its regulation and function remains controversial. We investigated spine motility in three principal neurons of the mouse CNS: cerebellar Purkinje cells, and cortical and hippocampal pyramidal neurons. Motility was assayed with time-lapse imaging by using two-photon microscopy of green fluorescent protein-labeled neurons in acute and cultured slices. In all three cell types, dendritic protrusions (filopodia and spines) were highly dynamic, exhibiting a diversity of morphological rearrangements over short (<1-min) time courses. The incidence of spine motility declined during postnatal maturation, but dynamic changes were still apparent in many spines in late-postnatal neurons. Although blockade or induction of neuronal activity did not affect spine motility, disruption of actin polymerization did. We hypothesize that this basal motility of dendritic protrusions is intrinsic to the neuron and underlies the heightened plasticity found in developing CNS.
Resumo:
Heterozygous reeler mice (HRM) haploinsufficient for reelin express ≈50% of the brain reelin content of wild-type mice, but are phenotypically different from both wild-type mice and homozygous reeler mice. They exhibit, (i) a down-regulation of glutamic acid decarboxylase 67 (GAD67)-positive neurons in some but not every cortical layer of frontoparietal cortex (FPC), (ii) an increase of neuronal packing density and a decrease of cortical thickness because of neuropil hypoplasia, (iii) a decrease of dendritic spine expression density on basal and apical dendritic branches of motor FPC layer III pyramidal neurons, and (iv) a similar decrease in dendritic spines expressed on the basal dendrite branches of CA1 pyramidal neurons of the hippocampus. To establish whether the defect of GAD67 down-regulation observed in HRM is responsible for neuropil hypoplasia and decreased dendritic spine density, we studied heterozygous GAD67 knockout mice (HG67M). These mice exhibited a down-regulation of GAD67 mRNA expression in FPC (about 50%), but they expressed normal amounts of reelin and had no neuropil hypoplasia or down-regulation of dendritic spine expression. These findings, coupled with electron-microscopic observations that reelin colocalizes with integrin receptors on dendritic spines, suggest that reelin may be a factor in the dynamic expression of cortical dendritic spines perhaps by promoting integrin receptor clustering. These findings are interesting because the brain neurochemical and neuroanatomical phenotypic traits exhibited by the HRM are in several ways similar to those found in postmortem brains of psychotic patients.
Resumo:
PR-39 is a porcine 39-aa peptide antibiotic composed of 49% proline and 24% arginine, with an activity against Gram-negative bacteria comparable to that of tetracycline. In Escherichia coli, it inhibits DNA and protein synthesis. PR-39 was originally isolated from pig small intestine, but subsequent cDNA cloning showed that the gene is expressed in the bone marrow. The open reading frame of the clone showed that PR-39 is made as 173-aa precursor whose proregion belongs to the cathelin family. The PR39 gene, which is rather compact and spans only 1784 bp has now been sequenced. The coding information is split into four exons. The first exon contains the signal sequence of 29 residues and the first 37 residues of the cathelin propart. Exons 2 and 3 contain only cathelin information, while exon 4 codes for the four C-terminal cathelin residues and the mature PR-39 peptide extended by three residues. The sequenced upstream region (1183 bp) contains four potential recognition sites for NF-IL6 and three for APRF, transcription factors known to regulate genes for both cytokines and acute phase response factors. Genomic hybridizations revealed a fairly high level of restriction fragment length polymorphism and indicated that there are at least two copies of the PR39 gene in the pig genome. PR39 was mapped to pig chromosome 13 by linkage and in situ hybridization mapping. The gene for the human peptide antibiotic FALL-39 (also a member of the cathelin family) was mapped to human chromosome 3, which is homologous to pig chromosome 13.