5 resultados para poor relief
em National Center for Biotechnology Information - NCBI
Resumo:
Magnetoencephalographic responses recorded from auditory cortex evoked by brief and rapidly successive stimuli differed between adults with poor vs. good reading abilities in four important ways. First, the response amplitude evoked by short-duration acoustic stimuli was stronger in the post-stimulus time range of 150–200 ms in poor readers than in normal readers. Second, response amplitude to rapidly successive and brief stimuli that were identical or that differed significantly in frequency were substantially weaker in poor readers compared with controls, for interstimulus intervals of 100 or 200 ms, but not for an interstimulus interval of 500 ms. Third, this neurological deficit closely paralleled subjects’ ability to distinguish between and to reconstruct the order of presentation of those stimulus sequences. Fourth, the average distributed response coherence evoked by rapidly successive stimuli was significantly weaker in the β- and γ-band frequency ranges (20–60 Hz) in poor readers, compared with controls. These results provide direct electrophysiological evidence supporting the hypothesis that reading disabilities are correlated with the abnormal neural representation of brief and rapidly successive sensory inputs, manifested in this study at the entry level of the cortical auditory/aural speech representational system(s).
Resumo:
Census data on endangered species are often sparse, error-ridden, and confined to only a segment of the population. Estimating trends and extinction risks using this type of data presents numerous difficulties. In particular, the estimate of the variation in year-to-year transitions in population size (the “process error” caused by stochasticity in survivorship and fecundities) is confounded by the addition of high sampling error variation. In addition, the year-to-year variability in the segment of the population that is sampled may be quite different from the population variability that one is trying to estimate. The combined effect of severe sampling error and age- or stage-specific counts leads to severe biases in estimates of population-level parameters. I present an estimation method that circumvents the problem of age- or stage-specific counts and is markedly robust to severe sampling error. This method allows the estimation of environmental variation and population trends for extinction-risk analyses using corrupted census counts—a common type of data for endangered species that has hitherto been relatively unusable for these analyses.
Resumo:
It is well established that the expression of Bacillus thuringiensis (B.t.) toxin genes in higher plants is severely limited at the mRNA level, but the cause remains controversial. Elucidating whether mRNA accumulation is limited transcriptionally or posttranscriptionally could contribute to effective gene design as well as provide insights about endogenous plant gene-expression mechanisms. To resolve this controversy, we compared the expression of an A/U-rich wild-type cryIA(c) gene and a G/C-rich synthetic cryIA(c) B.t.-toxin gene under the control of identical 5′ and 3′ flanking sequences. Transcriptional activities of the genes were equal as determined by nuclear run-on transcription assays. In contrast, mRNA half-life measurements demonstrated directly that the wild-type transcript was markedly less stable than that encoded by the synthetic gene. Sequences that limit mRNA accumulation were located at more than one site within the coding region, and some appeared to be recognized in Arabidopsis but not in tobacco (Nicotiana tabacum). These results support previous observations that some A/U-rich sequences can contribute to mRNA instability in plants. Our studies further indicate that some of these sequences may be differentially recognized in tobacco cells and Arabidopsis.