12 resultados para polyposis

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial adenomatous polyposis (FAP) is an autosomal-dominant disease characterized by the development of hundreds of adenomatous polyps of the colorectum. Approximately 80% of FAP patients can be shown to have truncating mutations of the APC gene. To determine the cause of FAP in the other 20% of patients, MAMA (monoallelic mutation analysis) was used to independently examine the status of each of the two APC alleles. Seven of nine patients analyzed were found to have significantly reduced expression from one of their two alleles whereas two patients were found to have full-length expression from both alleles. We conclude that more than 95% of patients with FAP have inactivating mutations in APC and that a combination of MAMA and standard genetic tests will identify APC abnormalities in the vast majority of such patients. That no APC expression from the mutant allele is found in some FAP patients argues strongly against the requirement for dominant negative effects of APC mutations. The results also suggest that there may be at least one additional gene, besides APC, that can give rise to FAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionarily conserved protein EB1 originally was identified by its physical association with the carboxyl-terminal portion of the adenomatous polyposis coli (APC) tumor suppressor protein, an APC domain commonly mutated in familial and sporadic forms of colorectal neoplasia. The subcellular localization of EB1 in epithelial cells was studied by using immunofluorescence and biochemical techniques. EB1 colocalized both to cytoplasmic microtubules in interphase cells and to spindle microtubules during mitosis, with pronounced centrosome staining. The cytoskeletal array detected by anti-EB1 antibody was abolished by incubation of the cells with nocodazole, an agent that disrupts microtubules; upon drug removal, EB1 localized to the microtubule-organizing center. Immunofluorescence analysis of SW480, a colon cancer cell line that expresses only carboxyl-terminal-deleted APC unable to interact with EB1, demonstrated that EB1 remained localized to the microtubule cytoskeleton, suggesting that this pattern of subcellular distribution is not mediated by its interaction with APC. In vitro cosedimentation with taxol-stabilized microtubules demonstrated that a significant fraction of EB1 associated with microtubules. Recent studies of the yeast EB1 homologues Mal3 and Bim1p have demonstrated that both proteins localize to microtubules and are important in vivo for microtubule function. Our results demonstrate that EB1 is a novel component of the microtubule cytoskeleton in mammalian cells. Associating with the mitotic apparatus, EB1 may play a physiologic role connecting APC to cellular division, coordinating the control of normal growth and differentiation processes in the colonic epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations of the human adenomatosis polyposis coli (APC) gene are associated with the development of familial as well as sporadic intestinal neoplasia. To examine the in vivo function of APC, 129/Sv embryonic stem (ES) cells were transfected with DNA encoding the wild-type human protein under the control of a promoter that is active in all four of the small intestine's principal epithelial lineages during their migration-associated differentiation. ES-APC cells were then introduced into C57BL/6-ROSA26 blastocysts. Analyses of adult B6-ROSA26<-->129/Sv-APC chimeric mice revealed that forced expression of APC results in markedly disordered cell migration. When compared with the effects of forced expression of E-cadherin, the data suggest that APC-catenin and E-cadherin-catenin complexes have opposing effects on intestinal epithelial cell movement/adhesiveness; augmentation of E-cadherin-beta-catenin complexes produces a highly ordered, "adhesive" migration, whereas augmentation of APC-beta-catenin complexes produces a disordered, nonadhesive migratory phenotype. We propose that APC mutations may promote tumorigenesis by increasing the relative activity of cadherin-catenin complexes, resulting in enhanced adhesiveness and functional anchorage of initiated cells within the intestinal crypt. Our studies also indicate that chimeric mice generated from B6-ROSA26 blastocysts and genetically manipulated ES cells should be useful for auditing gene function in the gastrointestinal tract and in other tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the majority of cervical cancers, DNAs of high-risk mucosotpropic human papillomaviruses (HPVs), such as type 16, are maintained so as to express two viral proteins, E6 and E7, suggesting an essential importance to carcinogenesis. The high-risk HPV E6 proteins are known to inactivate p53 tumor suppressor protein but appear to have an additional, molecularly unknown function(s). In this study, we demonstrate that these E6 proteins can bind to the second PDZ domain of the human homologue of the Drosophila discs large tumor suppressor protein (hDLG) through their C-terminal XS/TXV/L (where X represents any amino acid, S/T serine or threonine, and V/L valine or leucine) motif. This finding is similar to the interaction between the adenomatous polyposis coli gene product and hDLG. E6 mutants losing the ability to bind to hDLG are no longer able to induce E6-dependent transformation of rodent cells. These results suggest an intriguing possibility that interaction between the E6 protein and hDLG or other PDZ domain-containing proteins could be an underlying mechanism in the development of HPV-associated cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comparative typing of matched tumor and blood DNAs at dinucleotide repeat (microsatellite) loci has revealed in tumor DNA the presence of alleles that are not observed in normal DNA. The occurrence of these additional alleles is possibly due to replication errors (RERs). Although this observation has led to the recognition of a subtype of colorectal cancer with a high incidence of RERs (caused by a deficiency in DNA mismatch repair), a thorough analysis of the RER frequency in a consecutive series of colorectal cancers had not been reported. It is shown here that the extensive typing of 88 colorectal tumors reveals a bimodal distribution for the frequency of RER at microsatellite loci. Within the major mode (75 tumors, RER− subtype), the probability that a locus exhibited instability did not differ significantly among loci and tumors, being 0.02. The subsequent development of a statistical test for an operational discrimination between the RER− and RER+ subtypes indicated that the probability of misclassification did not exceed 0.001 in this series. The frequency of K-ras mutation was found to be equivalent in the two subtypes. However, in the RER+ tumors, the p53 gene mutation was less frequently detected, the adenomatous polyposis coli (APC) mutation was rare, and the biallelic inactivation of either of these genes was not observed. Furthermore, the concomitant occurrence of APC and tumor growth factor β receptor type II gene alterations was found only once. These data suggest that the repertoires of genes that are frequently altered in RER+ and RER− tumors may be more different than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical familial adenomatous polyposis (FAP) is a high-penetrance autosomal dominant disease that predisposes to hundreds or thousands of colorectal adenomas and carcinoma and that results from truncating mutations in the APC gene. A variant of FAP is attenuated adenomatous polyposis coli, which results from germ-line mutations in the 5′ and 3′ regions of the APC gene. Attenuated adenomatous polyposis coli patients have “multiple” colorectal adenomas (typically fewer than 100) without the florid phenotype of classical FAP. Another group of patients with multiple adenomas has no mutations in the APC gene, and their phenotype probably results from variation at a locus, or loci, elsewhere in the genome. Recently, however, a missense variant of APC (I1307K) was described that confers an increased risk of colorectal tumors, including multiple adenomas, in Ashkenazim. We have studied a set of 164 patients with multiple colorectal adenomas and/or carcinoma and analyzed codons 1263–1377 (exon 15G) of the APC gene for germ-line variants. Three patients with the I1307K allele were detected, each of Ashkenazi descent. Four patients had a germ-line E1317Q missense variant of APC that was not present in controls; one of these individuals had an unusually large number of metaplastic polyps of the colorectum. There is increasing evidence that there exist germ-line variants of the APC gene that predispose to the development of multiple colorectal adenomas and carcinoma, but without the florid phenotype of classical FAP, and possibly with importance for colorectal cancer risk in the general population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies of Min/+ (multiple intestinal neoplasia) mice on a sensitive genetic background, C57BL/6 (B6), showed that adenomas have lost heterozygosity for the germ-line ApcMin mutation in the Apc (adenomatous polyposis coli) gene. We now report that on a strongly resistant genetic background, AKR/J (AKR), Min-induced adenoma multiplicity is reduced by about two orders of magnitude compared with that observed on the B6 background. Somatic treatment with a strong mutagen increases tumor number in AKR Min/+ mice in an age-dependent manner, similar to results previously reported for B6 Min/+ mice. Immunohistochemical analyses indicate that Apc expression is suppressed in all intestinal tumors from both untreated and treated AKR Min/+ mice. However, the mechanism of Apc inactivation in AKR Min/+ mice often differs from that observed for B6 Min/+ mice. Although loss of heterozygosity is observed in some tumors, a significant percentage of tumors showed neither loss of heterozygosity nor Apc truncation mutations. These results extend our understanding of the effects of genetic background on Min-induced tumorigenesis in several ways. First, the AKR strain carries modifiers of Min in addition to Mom1. This combination of AKR modifiers can almost completely suppress spontaneous intestinal tumorigenesis associated with the Min mutation. Second, even on such a highly resistant genetic background, tumor formation continues to involve an absence of Apc function. The means by which Apc function is inactivated is affected by genetic background. Possible scenarios are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that have been implicated in a variety of biologic processes. The PPARδ isotype was recently proposed as a downstream target of the adenomatous polyposis coli (APC)/β-catenin pathway in colorectal carcinogenesis. To evaluate its role in tumorigenesis, a PPARδ null cell line was created by targeted homologous recombination. When inoculated as xenografts in nude mice, PPARδ −/− cells exhibited a decreased ability to form tumors compared with PPARδ +/− and wild-type controls. These data suggest that suppression of PPARδ expression contributes to the growth-inhibitory effects of the APC tumor suppressor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the fundamental tenets of oncology is that tumors arise from stem cells. In the colon, stem cells are thought to reside at the base of crypts. In the early stages of tumorigenesis, however, dysplastic cells are routinely found at the luminal surface of the crypts whereas the cells at the bases of these same crypts appear morphologically normal. To understand this discrepancy, we evaluated the molecular characteristics of cells isolated from the bases and orifices of the same crypts in small colorectal adenomas. We found that the dysplastic cells at the tops of the crypts often exhibited genetic alterations of adenomatous polyposis coli (APC) and neoplasia-associated patterns of gene expression. In contrast, cells located at the base of these same crypts did not contain such alterations and were not clonally related to the contiguous transformed cells above them. These results imply that development of adenomatous polyps proceeds through a top-down mechanism. Genetically altered cells in the superficial portions of the mucosae spread laterally and downward to form new crypts that first connect to preexisting normal crypts and eventually replace them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the influence of genetic instability [replication error (RER) phenotype] on APC (adenomatous polyposis coli), a gene thought to initiate colorectal tumorigenesis. The prevalence of APC mutations was similar in RER and non-RER tumors, indicating that both tumor types share this step in neoplastic transformation. However, in a total of 101 sequenced mutations, we noted a substantial excess of APC frameshift mutations in the RER cases (70% in RER tumors versus 47% in non-RER tumors, P < 0.04). These frameshifts were characteristic of mutations arising in cells deficient in DNA mismatch repair, with a predilection for mononucleotide repeats in the RER tumors (P < 0.0002), particularly (A)n tracts (P < 0.00007). These findings suggest that the genetic instability that is reflected by the RER phenotype precedes, and is responsible for, APC mutation in RER large bowel tumors and have important implications for understanding the very earliest stages of neoplasia in patients with tumors deficient in mismatch repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumors result from disruptions in the homeostatic mechanisms that regulate cell birth and cell death. In colon cancer, one of the earliest manifestation of this imbalance is the formation of polyps, caused by somatic and inherited mutations of the adenomatous polyposis coli (APC) tumor suppressor gene in both humans and mice. While the importance of APC in tumorigenesis is well documented, how it functions to prevent tumors remains a mystery. Using a novel inducible expression system, we show that expression of APC in human colorectal cancer cells containing endogenous inactive APC alleles results in a substantial diminution of cell growth. Further evaluation demonstrated that this was due to the induction of cell death through apoptosis. These results suggest that apoptosis plays a role not only in advanced tumors but also at the very earliest stages of neoplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the APC (adenomatous polyposis coli) gene appear to be responsible for not only familial adenomatous polyposis but also many sporadic cases of gastrointestinal cancers. Using homologous recombination in mouse embryonic stem cells, we constructed mice that contained a mutant gene encoding a product truncated at a 716 (Apc delta 716). Mendelian transmission of the gene caused most homozygous mice to die in utero before day 8 of gestation. The heterozygotes developed multiple polyps throughout the intestinal tract, mostly in the small intestine. The earliest polyps arose multifocally during the third week after birth, and new polyps continued to appear thereafter. Surprisingly, every nascent polyp consisted of a microadenoma covered with a layer of the normal villous epithelium. These microadenomas originated from single crypts by forming abnormal outpockets into the inner (lacteal) side of the neighboring villi. We carefully dissected such microadenomas from nascent polyps by peeling off the normal epithelium and determined their genotype by PCR: all microadenomas had already lost the wild-type Apc allele, whereas the mutant allele remained unchanged. These results indicate that loss of heterozygosity followed by formation of intravillous microadenomas is responsible for polyposis in Apc delta 716 intestinal mucosa. It is therefore unlikely that the truncated product interacts directly with the wild-type protein and causes the microadenomas by a dominant negative mechanism.