4 resultados para polyploidization

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes differ from mammals and other invertebrates in which body size evolution is caused by changes in cell number alone. The evolution of acellular syncytial growth in nematodes is also associated with changes in the ploidy of hypodermal nuclei. These nuclei are polyploid as a consequence of iterative rounds of endoreduplication, and this endocycle has evolved repeatedly. The association between acellular growth and endoreduplication is also seen in C. elegans mutations that interrupt transforming growth factor-β signaling and that result in dwarfism and deficiencies in hypodermal ploidy. The transforming growth factor-β pathway is a candidate for being involved in nematode body size evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci recently doubled by polyploidy (homoeologues) has not been studied. Here we use locus-specific isolation techniques with comparative mapping to characterize the evolution of homoeologous loci in allopolyploid cotton (Gossypium hirsutum) and in species representing its diploid progenitors. We isolated and sequenced 16 loci from both genomes of the allopolyploid, from both progenitor diploid genomes and appropriate outgroups. Phylogenetic analysis of the resulting 73.5 kb of sequence data demonstrated that for all 16 loci (14.7 kb/genome), the topology expected from organismal history was recovered. In contrast to observations involving repetitive DNAs in cotton, there was no evidence of interaction among duplicated genes in the allopolyploid. Polyploidy was not accompanied by an obvious increase in mutations indicative of pseudogene formation. Additionally, differences in rates of divergence among homoeologues in polyploids and orthologues in diploids were indistinguishable across loci, with significant rate deviation restricted to two putative pseudogenes. Our results indicate that most duplicated genes in allopolyploid cotton evolve independently of each other and at the same rate as those of their diploid progenitors. These indications of genic stasis accompanying polyploidization provide a sharp contrast to recent examples of rapid genomic evolution in allopolyploids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the evolutionary success of polyploidy in higher plants has been widely recognized, there is virtually no information on how polyploid genomes have evolved after their formation. In this report, we used synthetic polyploids of Brassica as a model system to study genome evolution in the early generations after polyploidization. The initial polyploids we developed were completely homozygous, and thus, no nuclear genome changes were expected in self-fertilized progenies. However, extensive genome change was detected by 89 nuclear DNA clones used as probes. Most genome changes involved loss and/or gain of parental restriction fragments and appearance of novel fragments. Genome changes occurred in each generation from F2 to F5, and the frequency of change was associated with divergence of the diploid parental genomes. Genetic divergence among the derivatives of synthetic polyploids was evident from variation in genome composition and phenotypes. Directional genome changes, possibly influenced by cytoplasmic-nuclear interactions, were observed in one pair of reciprocal synthetics. Our results demonstrate that polyploid species can generate extensive genetic diversity in a short period of time. The occurrence and impact of this process in the evolution of natural polyploids is unknown, but it may have contributed to the success and diversification of many polyploid lineages in both plants and animals.