18 resultados para polyphosphate

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inositol polyphosphate 4-phosphatase (4-phosphatase) is an enzyme that catalyses the hydrolysis of the 4-position phosphate from phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. In human platelets the formation of this phosphatidylinositol, by the actions of phosphatidylinositol 3-kinase (PI 3-kinase), correlates with irreversible platelet aggregation. We have shown previously that a phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase forms a complex with the p85 subunit of PI 3-kinase. In this study we investigated whether PI 3-kinase also forms a complex with the 4-phosphatase in human platelets. Immunoprecipitates of the p85 subunit of PI 3-kinase from human platelet cytosol contained 4-phosphatase enzyme activity and a 104-kDa polypeptide recognized by specific 4-phosphatase antibodies. Similarly, immunoprecipitates made using 4-phosphatase-specific antibodies contained PI 3-kinase enzyme activity and an 85-kDa polypeptide recognized by antibodies to the p85 adapter subunit of PI 3-kinase. After thrombin activation, the 4-phosphatase translocated to the actin cytoskeleton along with PI 3-kinase in an integrin- and aggregation-dependent manner. The majority of the PI 3-kinase/4-phosphatase complex (75%) remained in the cytosolic fraction. We propose that the complex formed between the two enzymes serves to localize the 4-phosphatase to sites of PtdIns(3,4)P2 production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, the structure and properties of natural products have been determined by total synthesis and comparison with authentic samples. We have now applied this procedure to the first nonproteinaceous ion channel, isolated from bacterial plasma membranes, and consisting of a complex of poly(3-hydroxybutyrate) and calcium polyphosphate. To this end, we have now synthesized the 128-mer of hydroxybutanoic acid and prepared a complex with inorganic calcium polyphosphate (average 65-mer), which was incorporated into a planar lipid bilayer of synthetic phospholipids. We herewith present data that demonstrate unambiguously that the completely synthetic complex forms channels that are indistinguishable in their voltage-dependent conductance, in their selectivity for divalent cations, and in their blocking behavior (by La3+) from channels isolated from Escherichia coli. The implications of our finding for prebiotic chemistry, biochemistry, and biology are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate [poly(P)] levels in Escherichia coli were reduced to barely detectable concentrations by expression of the plasmid-borne gene for a potent yeast exopolyphosphatase [poly(P)ase]. As a consequence, resistance to H2O2 was greatly diminished, particularly in katG (catalase HPI) mutants, implying a major role for the other catalase, the stationary-phase KatE (HPII), which is rpoS dependent. Resistance was restored to wild-type levels by complementation with plasmids expressing ppk, the gene for PPK [the polyphosphate kinase that generates poly(P)]. Induction of expression of both katE and rpoS (the stationary-phase σ factor) was prevented in cells in which the poly(P)ase was overproduced. Inasmuch as this inhibition by poly(P)ase did not affect the levels of the stringent-response guanosine nucleotides (pppGpp and ppGpp) and in view of the capacity of additional rpoS expression to suppress the poly(P)ase inhibition of katE expression, a role is proposed for poly(P) in inducing the expression of rpoS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) kinase was studied for its roles in physiological responses to nutritional deprivation in Escherichia coli. A mutant lacking polyP kinase exhibited an extended lag phase of growth, when shifted from a rich to a minimal medium (nutritional downshift). Supplementation of amino acids to the minimal medium abolished the extended growth lag of the mutant. Levels of the stringent response factor, guanosine 5′-diphosphate 3′-diphosphate, increased in response to the nutritional downshift, but, unlike in the wild type, the levels were sustained in the mutant. These results suggested that the mutant was impaired in the induction of amino acid biosynthetic enzymes. The expression of an amino acid biosynthetic gene, hisG, was examined by using a transcriptional lacZ fusion. Although the mutant did not express the fusion in response to the nutritional downshift, Northern blot analysis revealed a significant increase of hisG-lacZ mRNA. Amino acids generated by intracellular protein degradation are very important for the synthesis of enzymes at the onset of starvation. In the wild type, the rate of protein degradation increased in response to the nutritional downshift whereas it did not in the mutant. Supplementation of amino acids at low concentrations to the minimal medium enabled the mutant to express the hisG-lacZ fusion. Thus, the impaired regulation of protein degradation results in the adaptation defect, suggesting that polyP kinase is required to stimulate protein degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the synthesis of inorganic polyphosphate (polyP) from ATP by polyphosphate kinase (PPK; EC 2.7.4.1) of Escherichia coli, an N—P-linked phosphoenzyme was previously identified as the intermediate. The phosphate is presumed to be linked to N3 of the histidine residue because of its chemical stabilities and its resemblance to other enzymes known to contain N3-phosphohistidine. Tryptic digests of [32P]PPK contain a predominant 32P-labeled peptide that includes His-441. Of the 16 histidine residues in PPK of E. coli, 4 are conserved among several bacterial species. Mutagenesis of these 4 histidines shows that two (His-430 and His-598) are unaffected in function when mutated to glutamine, whereas two others (His-441 and His-460) mutated to glutamine or alanine fail to be phosphorylated, show no enzymatic activities, and fail to support polyP accumulation in cells bearing these mutant enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a consensus sequence in inositol phosphate kinase, we have identified and cloned a 44-kDa mammalian inositol phosphate kinase with broader catalytic capacities than any other member of the family and which we designate mammalian inositol phosphate multikinase (mIPMK). By phosphorylating inositol 4,5-bisphosphate, mIPMK provides an alternative biosynthesis for inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. mIPMK also can form the pyrophosphate disphosphoinositol tetrakisphosphate (PP-InsP4) from InsP5. Additionally, mIPMK forms InsP4 from Ins(1,4,5)P3 and InsP5 from Ins(1,3,4,5)P4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lowe syndrome is an X-linked disorder that has a complex phenotype that includes progressive renal failure and blindness. The disease is caused by mutations in an inositol polyphosphate 5-phosphatase designated OCRL. It has been shown that the OCRL protein is found on the surface of lysosomes and that a renal tubular cell line deficient in OCRL accumulated substrate phosphatidylinositol 4,5-bisphosphate. Because this lipid is required for vesicle trafficking from lysosomes, we postulate that there is a defect in lysosomal enzyme trafficking in patients with Lowe syndrome that leads to increased extracellular lysosomal enzymes and might lead to tissue damage and contribute to the pathogenesis of the disease. We have measured seven lysosomal enzymes in the plasma of 15 patients with Lowe syndrome and 15 age-matched male controls. We find a 1.6- to 2.0-fold increase in all of the enzymes measured. When the data was analyzed by quintiles of activity for all of the enzymes, we found that 95% of values in the lowest quintile come from normal subjects whereas in the highest quintile 85% of the values are from patients with Lowe syndrome. The increased enzyme levels are not attributable to renal insufficiency because there was no difference in enzyme activity in the four patients with the highest creatinine levels compared with the six patients with the lowest creatinine values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several proteins secreted by enteric bacteria are thought to contribute to virulence by disturbing the signal transduction of infected cells. Here, we report that SopB, a protein secreted by Salmonella dublin, has sequence homology to mammalian inositol polyphosphate 4-phosphatases and that recombinant SopB has inositol phosphate phosphatase activity in vitro. SopB hydrolyzes phosphatidylinositol 3,4,5-trisphosphate, an inhibitor of Ca2+-dependent chloride secretion. In addition, SopB hydrolyzes inositol 1,3,4,5,6 pentakisphosphate to yield inositol 1,4,5,6-tetrakisphosphate, a signaling molecule that increases chloride secretion indirectly by antagonizing the inhibition of chloride secretion by phosphatidylinositol 3,4,5-trisphosphate [Eckmann, L., Rudolf, M. T., Ptasznik, A., Schultz, C., Jiang, T., Wolfson, N., Tsien, R., Fierer, J., Shears, S. B., Kagnoff, M. F., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14456–14460]. Mutation of a conserved cysteine that abolishes phosphatase activity of SopB results in a mutant strain, S. dublin SB c/s, with decreased ability to induce fluid secretion in infected calf intestine loops. Moreover, HeLa cells infected with S. dublin SB c/s do not accumulate high levels of inositol 1,4,5,6-tetrakisphosphate that are characteristic of wild-type S. dublin-infected cells. Therefore, SopB mediates virulence by interdicting inositol phosphate signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-1 replication is inhibited by the incorporation of chain-terminating nucleotides at the 3′ end of the growing DNA chain. Here we show a nucleotide-dependent reaction catalyzed by HIV-1 reverse transcriptase that can efficiently remove the chain-terminating residue, yielding an extendible primer terminus. Radioactively labeled 3′-terminal residue from the primer can be transferred into a product that is resistant to calf intestinal alkaline phosphatase and sensitive to cleavage by snake venom phosphodiesterase. The products formed from different nucleotide substrates have unique electrophoretic migrations and have been identified as dinucleoside tri- or tetraphosphates. The reaction is inhibited by dNTPs that are complementary to the next position on the template (Ki ≈ 5 μM), suggesting competition between dinucleoside polyphosphate synthesis and DNA polymerization. Dinucleoside polyphosphate synthesis was inhibited by an HIV-1 specific non-nucleoside inhibitor and was absent in mutant HIV-1 reverse transcriptase deficient in polymerase activity, indicating that this activity requires a functional polymerase active site. We suggest that dinucleoside polyphosphate synthesis occurs by transfer of the 3′ nucleotide from the primer to the pyrophosphate moiety in the nucleoside di- or triphosphate substrate through a mechanism analogous to pyrophosphorolysis. Unlike pyrophosphorolysis, however, the reaction is nucleotide-dependent, is resistant to pyrophosphatase, and produces dinucleoside polyphosphates. Because it occurs at physiological concentrations of ribonucleoside triphosphates, this reaction may determine the in vivo activity of many nucleoside antiretroviral drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-linked lymphoproliferative syndrome (XLP) is an inherited immunodeficiency characterized by increased susceptibility to Epstein–Barr virus (EBV). In affected males, primary EBV infection leads to the uncontrolled proliferation of virus-containing B cells and reactive cytotoxic T cells, often culminating in the development of high-grade lymphoma. The XLP gene has been mapped to chromosome band Xq25 through linkage analysis and the discovery of patients harboring large constitutional genomic deletions. We describe here the presence of small deletions and intragenic mutations that specifically disrupt a gene named DSHP in 6 of 10 unrelated patients with XLP. This gene encodes a predicted protein of 128 amino acids composing a single SH2 domain with extensive homology to the SH2 domain of SHIP, an inositol polyphosphate 5-phosphatase that functions as a negative regulator of lymphocyte activation. DSHP is expressed in transformed T cell lines and is induced following in vitro activation of peripheral blood T lymphocytes. Expression of DSHP is restricted in vivo to lymphoid tissues, and RNA in situ hybridization demonstrates DSHP expression in activated T and B cell regions of reactive lymph nodes and in both T and B cell neoplasms. These observations confirm the identity of DSHP as the gene responsible for XLP, and suggest a role in the regulation of lymphocyte activation and proliferation. Induction of DSHP may sustain the immune response by interfering with SHIP-mediated inhibition of lymphocyte activation, while its inactivation in XLP patients results in a selective immunodeficiency to EBV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several inositol-containing compounds play key roles in receptor-mediated cell signaling events. Here, we describe a function for a specific inositol polyphosphate, d-myo-inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P4], that is produced acutely in response to a receptor-independent process. Thus, infection of intestinal epithelial cells with the enteric pathogen Salmonella, but not with other invasive bacteria, induced a multifold increase in Ins(1,4,5,6)P4 levels. To define a specific function of Ins(1,4,5,6)P4, a membrane-permeant, hydrolyzable ester was used to deliver it to the intracellular compartment, where it antagonized epidermal growth factor (EGF)-induced inhibition of calcium-mediated chloride (Cl−) secretion (CaMCS) in intestinal epithelia. This EGF function is likely mediated through a phosphoinositide 3-kinase (PtdIns3K)-dependent mechanism because the EGF effects are abolished by wortmannin, and three different membrane-permeant esters of the PtdIns3K product phosphatidylinositol 3,4,5-trisphosphate mimicked the EGF effect on CaMCS. We further demonstrate that Ins(1,4,5,6)P4 antagonized EGF signaling downstream of PtdIns3K because Ins(1,4,5,6)P4 interfered with the PtdInsP3 effect on CaMCS without affecting PtdIns3K activity. Thus, elevation of Ins(1,4,5,6)P4 in Salmonella-infected epithelia may promote Cl− flux by antagonizing EGF inhibition mediated through PtdIns3K and PtdInsP3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella spp. have evolved the ability to enter into cells that are normally nonphagocytic. The internalization process is the result of a remarkable interaction between the bacteria and the host cells. Immediately on contact, Salmonella delivers a number of bacterial effector proteins into the host cell cytosol through the function of a specialized organelle termed the type III secretion system. Initially, two of the delivered proteins, SopE and SopB, stimulate the small GTP-binding proteins Cdc42 and Rac. SopE is an exchange factor for these GTPases, and SopB is an inositol polyphosphate phosphatase. Stimulation of Cdc42 and Rac leads to marked actin cytoskeleton rearrangements, which are further enhanced by SipA, a Salmonella protein also delivered into the host cell by the type III secretion system. SipA lowers the critical concentration of G-actin, stabilizes F-actin at the site of bacterial entry, and increases the bundling activity of the host-cell protein T-plastin (fimbrin). The cellular responses stimulated by Salmonella are short-lived; therefore, immediately after bacterial entry, the cell regains its normal architecture. Remarkably, this process is mediated by SptP, another target of the type III secretion system. SptP exert its function by serving as a GTPase-activating protein for Cdc42 and Rac, turning these G proteins off after their stimulation by the bacterial effectors SopE and SopB. The balanced interaction of Salmonella with host cells constitutes a remarkable example of the sophisticated nature of a pathogen/host relationship shaped by evolution through a longstanding coexistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endopolyphosphatases (Ppn1) from yeast and animal cells hydrolyze inorganic polyphosphate (poly P) chains of many hundreds of phosphate residues into shorter lengths. The limit digest consists predominantly of chains of 60 (P60) and 3 (P3) Pi residues. Ppn1 of Saccharomyces cerevisiae, a homodimer of 35-kDa subunits (about 352-aa) is of vacuolar origin and requires the protease activation of a 75-kDa (674-aa) precursor polypeptide. The Ppn1 gene (PPN1) now has been cloned, sequenced, overexpressed, and deleted. That PPN1 encodes Ppn1 was verified by a 25-fold increase in Ppn1 when overexpressed under a GAL promoter and also by several peptide sequences that match exactly with sequences in a yeast genome ORF, the mutation of which abolishes Ppn1 activity. Null mutants in Ppn1 accumulate long-chain poly P and are defective in growth in minimal media. A double mutant of PPN1 and PPX1 (the gene encoding a potent exopolyphosphatase) loses viability rapidly in stationary phase. Whether this loss is a result of the excess of long-chain poly P or to the lack of shorter chains (i.e., poly P60 and P3) is unknown. Overexpression of the processed form of Ppn1 should provide a unique and powerful reagent to analyze poly P when the chain termini are unavailable to the actions of polyPase and poly P kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Squid synaptotagmin (Syt) cDNA, including its open reading frame, was cloned and polyclonal antibodies were obtained in rabbits immunized with glutathione S-transferase (GST)-Syt-C2A. Binding assays indicated that the antibody, anti-Syt-C2A, recognized squid Syt and inhibited the Ca(2+)-dependent phospholipid binding to the C2A domain. This antibody, when injected into the preterminal at the squid giant synapse, blocked transmitter release in a manner similar to that previously reported for the presynaptic injection of members of the inositol high-polyphosphate series. The block was not accompanied by any change in the presynaptic action potential or the amplitude or voltage dependence of the presynaptic Ca2+ current. The postsynaptic potential was rather insensitive to repetitive presynaptic stimulation, indicating a direct effect of the antibody on the transmitter release system. Following block of transmitter release, confocal microscopical analysis of the preterminal junction injected with rhodamine-conjugated anti-Syt-C2A demonstrated fluorescent spots at the inner surface of the presynaptic plasmalemma next to the active zones. Structural analysis of the same preparations demonstrated an accumulation of synaptic vesicles corresponding in size and distribution to the fluorescent spots demonstrated confocally. Together with the finding that such antibody prevents Ca2+ binding to a specific receptor in the C2A domain, these results indicate that Ca2+ triggers transmitter release by activating the C2A domain of Syt. We conclude that the C2A domain is directly related to the fusion of synaptic vesicles that results in transmitter release.