3 resultados para polymer interactions
em National Center for Biotechnology Information - NCBI
Resumo:
Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid).
Resumo:
Plasma processing is a standard industrial method for the modification of material surfaces and the deposition of thin films. Polyatomic ions and neutrals larger than a triatomic play a critical role in plasma-induced surface chemistry, especially in the deposition of polymeric films from fluorocarbon plasmas. In this paper, low energy CF3+ and C3F5+ ions are used to modify a polystyrene surface. Experimental and computational studies are combined to quantify the effect of the unique chemistry and structure of the incident ions on the result of ion-polymer collisions. C3F5+ ions are more effective at growing films than CF3+, both at similar energy/atom of ≈6 eV/atom and similar total kinetic energies of 25 and 50 eV. The composition of the films grown experimentally also varies with both the structure and kinetic energy of the incident ion. Both C3F5+ and CF3+ should be thought of as covalently bound polyatomic precursors or fragments that can react and become incorporated within the polystyrene surface, rather than merely donating F atoms. The size and structure of the ions affect polymer film formation via differing chemical structure, reactivity, sticking probabilities, and energy transfer to the surface. The different reactivity of these two ions with the polymer surface supports the argument that larger species contribute to the deposition of polymeric films from fluorocarbon plasmas. These results indicate that complete understanding and accurate computer modeling of plasma–surface modification requires accurate measurement of the identities, number densities, and kinetic energies of higher mass ions and energetic neutrals.
Resumo:
Cellular processes are mediated by complex networks of molecular interactions. Dissection of their role most commonly is achieved by using genetic mutations that alter, for example, protein–protein interactions. Small molecules that accomplish the same result would provide a powerful complement to the genetic approach, but it generally is believed that such molecules are rare. There are several natural products, however, that illustrate the feasibility of this approach. Split-pool synthesis now provides a simple mechanical means to prepare vast numbers of complex, even natural product-like, molecules individually attached to cell-sized polymer beads. Here, we describe a genetic system compatible with split-pool synthesis that allows the detection of cell-permeable, small molecule inhibitors of protein–protein interactions in 100- to 200-nl cell culture droplets, prepared by a recently described technique that arrays large numbers of such droplets. These “nanodroplets” contain defined media, cells, and one or more beads containing ≈100 pmol of a photoreleasable small molecule and a controlled number of cells. The engineered Saccharomyces cerevisiae cells used in this study express two interacting proteins after induction with galactose whose interaction results in cell death in the presence of 5-fluoroorotic acid (inducible reverse two-hybrid assay). Disruption of the interaction by a small molecule allows growth, and the small molecule can be introduced into the system hours before induction of the toxic interaction. We demonstrate that the interaction between the activin receptor R1 and the immunophilin protein FKBP12 can be disrupted by the small molecule FK506 at nanomolar concentrations in nanodroplets. This system should provide a general method for selecting cell-permeable ligands that can be used to study the relevance of protein–protein interactions in living cells or organisms.