2 resultados para polar stationary phases
em National Center for Biotechnology Information - NCBI
Resumo:
Cell-wall mechanical properties play an integral part in the growth and form of Saccharomyces cerevisiae. In contrast to the tremendous knowledge on the genetics of S. cerevisiae, almost nothing is known about its mechanical properties. We have developed a micromanipulation technique to measure the force required to burst single cells and have recently established a mathematical model to extract the mechanical properties of the cell wall from such data. Here we determine the average surface modulus of the S. cerevisiae cell wall to be 11.1 ± 0.6 N/m and 12.9 ± 0.7 N/m in exponential and stationary phases, respectively, giving corresponding Young's moduli of 112 ± 6 MPa and 107 ± 6 MPa. This result demonstrates that yeast cell populations strengthen as they enter stationary phase by increasing wall thickness and hence the surface modulus, without altering the average elastic properties of the cell-wall material. We also determined the average breaking strain of the cell wall to be 82% ± 3% in exponential phase and 80% ± 3% in stationary phase. This finding provides a failure criterion that can be used to predict when applied stresses (e.g., because of fluid flow) will lead to wall rupture. This work analyzes yeast compression experiments in different growth phases by using engineering methodology.
Resumo:
The effect of temperature from 5 degrees C to 50 degrees C on the retention of dansyl derivatives of amino acids in hydrophobic interaction chromatography (HIC) was investigated by HPLC on three stationary phases. Plots of the logarithmic retention factor against the reciprocal temperature in a wide range were nonlinear, indicative of a large negative heat capacity change associated with retention. By using Kirchoff's relations, the enthalpy, entropy, and heat capacity changes were evaluated from the logarithmic retention factor at various temperatures by fitting the data to a logarithmic equation and a quadratic equation that are based on the invariance and on an inverse square dependence of the heat capacity on temperature, respectively. In the experimental temperature interval, the heat capacity change was found to increase with temperature and could be approximated by the arithmetic average. For HIC retention of a set of dansylamino acids, both enthalpy and entropy changes were positive at low temperatures but negative at high temperatures as described in the literature for other processes based on the hydrophobic effect. The approach presented here shows that chromatographic measurements can be not only a useful adjunct to calorimetry but also an alternative means for the evaluation of thermodynamic parameters.