2 resultados para pleomorphic xanthoastrocytoma

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used electron cryo-microscopy and image analysis to examine the native structure of immature, protease-deficient (PR−) and mature, wild-type (WT) Moloney murine leukemia virus (MuLV). Maturational cleavage of the Gag polyprotein by the viral protease is associated with striking morphological changes. The PR− MuLV particles exhibit a rounded central core, which has a characteristic track-like shell on its surface, whereas the WT MuLV cores display a polygonal surface with loss of the track-like feature. The pleomorphic shape and inability to refine unique orientation angles suggest that neither the PR− nor the WT MuLV adheres to strict icosahedral symmetry. Nevertheless, the PR− MuLV particles do exhibit paracrystalline order with a spacing between Gag molecules of ≈45 Å and a length of ≈200 Å. Because of the pleomorphic shape and paracrystalline packing of the Gag–RNA complexes, we raise the possibility that assembly of MuLV is driven by protein–RNA, as well as protein–protein, interactions. The maturation process involves a dramatic reorganization of the packing arrangements within the ribonucleoprotein core with disordering and loosening of the individual protein components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von Hippel–Lindau (VHL) disease is a pleomorphic familial tumor syndrome that is characterized by the development of highly vascularized tumors. Homozygous disruption of the VHL gene in mice results in embryonic lethality. To investigate VHL function in the adult we have generated a conditional VHL null allele (2-lox allele) and null allele (1-lox allele) by Cre-mediated recombination in embryonic stem cells. We show here that mice heterozygous for the 1-lox allele develop cavernous hemangiomas of the liver, a rare manifestation of the human disease. Histologically these tumors were associated with hepatocellular steatosis and focal proliferations of small vessels. To study the cellular origin of these lesions we inactivated VHL tissue-specifically in hepatocytes. Deletion of VHL in the liver resulted in severe steatosis, many blood-filled vascular cavities, and foci of increased vascularization within the hepatic parenchyma. These histopathological changes were similar to those seen in livers from mice heterozygous for the 1-lox allele. Hypoxia-inducible mRNAs encoding vascular endothelial growth factor, glucose transporter 1, and erythropoietin were up-regulated. We thus provide evidence that targeted inactivation of mouse VHL can model clinical features of the human disease and underline the importance of the VHL gene product in the regulation of hypoxia-responsive genes in vivo.