4 resultados para plasma biochemical parameters

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nerve growth factor (NGF) serum levels were measured in 49 patients with asthma and/or rhinoconjunctivitis and/or urticaria-angioedema. Clinical and biochemical parameters, such as bronchial reactivity, total and specific serum IgE levels, and circulating eosinophil cationic protein levels, were evaluated in relation to NGF values in asthma patients. NGF was significantly increased in the 42 allergic (skin-test- or radioallergosorbent-test-positive) subjects (49.7 +/- 28.8 pg/ml) versus the 18 matched controls (3.8 +/- 1.7 pg/ml; P < 0.001). NGF levels in allergic patients with asthma, rhinoconjunctivitis, and urticaria-angioedema were 132.1 +/- 90.8, 17.6 +/- 6.1, and 7.6 +/- 1.8 pg/ml (P < 0.001, P < 0.002, and P < 0.05 versus controls), respectively. Patients with more than one allergic disease had higher NGF serum values than those with a single disease. When asthma patients were considered as a group, NGF serum values (87.6 +/- 59.8 pg/ml) were still significantly higher than those of control groups (P < 0.001), but allergic asthma patients had elevated NGF serum levels compared with nonallergic asthma patients (132.1 +/- 90.8 versus 4.9 +/- 2.9 pg/ml; P < 0.001). NGF serum levels correlate to total IgE serum values (rho = 0.43; P < 0.02). The highest NGF values were found in patients with severe allergic asthma, a high degree of bronchial hyperreactivity, and high total IgE and eosinophil cationic protein serum levels. This study represents the first observation (that we know of) that NGF is increased in human allergic inflammatory diseases and asthma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue contain two prominent major intrinsic protein species of 31 and 27 kD (X. Qi, C.Y Tai, B.P. Wasserman [1995] Plant Physiol 108: 387–392). In this study affinity-purified antibodies were used to investigate their localization and biochemical properties. Both plasma membrane intrinsic protein (PMIP) subgroups partitioned identically in sucrose gradients; however, each exhibited distinct properties when probed for multimer formation, and by limited proteolysis. The tendency of each PMIP species to form disulfide-linked aggregates was studied by inclusion of various sulfhydryl agents during tissue homogenization and vesicle isolation. In the absence of dithiothreitol and sulfhydryl reagents, PMIP27 yielded a mixture of monomeric and aggregated species. In contrast, generation of a monomeric species of PMIP31 required the addition of dithiothreitol, iodoacetic acid, or N-ethylmaleimide. Mixed disulfide-linked heterodimers between the PMIP31 and PMIP27 subgroups were not detected. Based on vectorial proteolysis of right-side-out vesicles with trypsin and hydropathy analysis of the predicted amino acid sequence derived from the gene encoding PMIP27, a topological model for a PMIP27 was established. Two exposed tryptic cleavage sites were identified from proteolysis of PMIP27, and each was distinct from the single exposed site previously identified in surface loop C of a PMIP31. Although the PMIP31 and PMIP27 species both contain integral proteins that appear to occur within a single vesicle population, these results demonstrate that each PMIP subgroup responds differently to perturbations of the membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated membrane protein essential for neurotransmitter release from synaptic terminals. We used neuronal cell lines to study the biosynthesis and posttranslational processing of SNAP-25 to investigate how palmitoylation contributes to the subcellular localization of the protein. SNAP-25 was synthesized as a soluble protein that underwent palmitoylation approximately 20 min after synthesis. Palmitoylation of the protein coincided with its stable membrane association. Treatment of cells with brefeldin A or other disrupters of transport inhibited palmitoylation of newly synthesized SNAP-25 and abolished membrane association. These results demonstrate that the processing of SNAP-25 and its targeting to the plasma membrane depend on an intact transport mechanism along the exocytic pathway. The kinetics of SNAP-25 palmitoylation and membrane association and the sensitivity of these parameters to brefeldin A suggest a novel trafficking pathway for targeting proteins to the plasma membrane. In vitro, SNAP-25 stably associated with membranes was not released from the membrane after chemical deacylation. We propose that palmitoylation of SNAP-25 is required for initial membrane targeting of the protein but that other interactions can maintain membrane association in the absence of fatty acylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane.