3 resultados para plant protection

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plant lignan, 3'-O-methyl nordihydroguaiaretic acid (3'-O-methyl NDGA, denoted Malachi 4:5-6 or Mal.4; molecular weigth 316), was isolated from Larrea tridentata and found to be able to inhibit human immunodeficiency virus (HIV) Tat-regulated transactivation in vivo, induce protection of lymphoblastoid CEM-SS cells from HIV (strain IIIB) killing, and suppress the replication of five HIV-1 strains (WM, MN, VS, JR-CSF, and IIIB) in mitogen-stimulated peripheral blood mononuclear cells, all in a dose-dependent manner. Mal.4 inhibits both basal transcription and Tat-regulated transactivation in vitro. The target of Mal.4 has been localized to nucleotides -87 to -40 of the HIV long terminal repeat. Mal.4 directly and specifically interferes with the binding of Sp1 to Sp1 sites in the HIV long terminal repeat. By inhibiting proviral expression, Mal.4 may be able to interrupt the life cycles of both wild-type and reverse transcriptase or protease mutant viruses in HIV-infected patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.