8 resultados para plant populations
em National Center for Biotechnology Information - NCBI
Resumo:
Despite the critical role that terrestrial vegetation plays in the Earth's carbon cycle, very little is known about the potential evolutionary responses of plants to anthropogenically induced increases in concentrations of atmospheric CO2. We present experimental evidence that rising CO2 concentration may have a direct impact on the genetic composition and diversity of plant populations but is unlikely to result in selection favoring genotypes that exhibit increased productivity in a CO2-enriched atmosphere. Experimental populations of an annual plant (Abutilon theophrasti, velvetleaf) and a temperate forest tree (Betula alleghaniensis, yellow birch) displayed responses to increased CO2 that were both strongly density-dependent and genotype-specific. In competitive stands, a higher concentration of CO2 resulted in pronounced shifts in genetic composition, even though overall CO2-induced productivity enhancements were small. For the annual species, quantitative estimates of response to selection under competition were 3 times higher at the elevated CO2 level. However, genotypes that displayed the highest growth responses to CO2 when grown in the absence of competition did not have the highest fitness in competitive stands. We suggest that increased CO2 intensified interplant competition and that selection favored genotypes with a greater ability to compete for resources other than CO2. Thus, while increased CO2 may enhance rates of selection in populations of competing plants, it is unlikely to result in the evolution of increased CO2 responsiveness or to operate as an important feedback in the global carbon cycle. However, the increased intensity of selection and drift driven by rising CO2 levels may have an impact on the genetic diversity in plant populations.
Resumo:
Predators of herbivorous animals can affect plant populations by altering herbivore density, behavior, or both. To test whether the indirect effect of predators on plants arises from density or behavioral responses in a herbivore population, we experimentally examined the dynamics of terrestrial food chains comprised of old field plants, leaf-chewing grasshoppers, and spider predators in Northeast Connecticut. To separate the effects of predators on herbivore density from the effects on herbivore behavior, we created two classes of spiders: (i) risk spiders that had their feeding mouth parts glued to render them incapable of killing prey and (ii) predator spiders that remained unmanipulated. We found that the effect of predators on plants resulted from predator-induced changes in herbivore behavior (shifts in activity time and diet selection) rather than from predator-induced changes in grasshopper density. Neither predator nor risk spiders had a significant effect on grasshopper density relative to a control. This demonstrates that the behavioral response of prey to predators can have a strong impact on the dynamics of terrestrial food chains. The results make a compelling case to examine behavioral as well as density effects in theoretical and empirical research on food chain dynamics.
Resumo:
Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises.
Resumo:
Explanations of self-thinning in plant populations have focused on plant shape and packing. A dynamic model based on the structure of local interactions successfully reproduces the pattern and can be approximated to identify key parameters and relationships. The approach generates testable new explanations for differences between species and populations, unifies self-thinning with other patterns in plant population dynamics, and indicates why organisms other than plants can follow the law.
Resumo:
Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.
Resumo:
Two potential outcomes of a coevolutionary interaction are an escalating arms race and stable cycling. The general expectation has been that arms races predominate in cases of polygenic inheritance of resistance traits and permanent cycling predominates in cases in which resistance is controlled by major genes. In the interaction between Depressaria pastinacella, the parsnip webworm, and Pastinaca sativa, the wild parsnip, traits for plant resistance to insect herbivory (production of defensive furanocoumarins) as well as traits for herbivore “virulence” (ability to metabolize furanocoumarins) are characterized by continuous heritable variation. Furanocoumarin production in plants and rates of metabolism in insects were compared among four midwestern populations; these traits then were classified into four clusters describing multitrait phenotypes occurring in all or most of the populations. When the frequency of plant phenotypes belonging to each of the clusters is compared with the frequency of the insect phenotypes in each of the clusters across populations, a remarkable degree of frequency matching is revealed in three of the populations. That frequencies of phenotypes vary among populations is consistent with the fact that spatial variation occurs in the temporal cycling of phenotypes; such processes contribute in generating a geographic mosaic in this coevolutionary interaction on the landscape scale. Comparisons of contemporary plant phenotype distributions with phenotypes of herbarium specimens collected 9–125 years ago from across a similar latitudinal gradient, however, suggest that for at least one resistance trait—sphondin concentration—interactions with webworms have led to escalatory change.
Resumo:
Phyllosphere microbial communities were evaluated on leaves of field-grown plant species by culture-dependent and -independent methods. Denaturing gradient gel electrophoresis (DGGE) with 16S rDNA primers generally indicated that microbial community structures were similar on different individuals of the same plant species, but unique on different plant species. Phyllosphere bacteria were identified from Citrus sinesis (cv. Valencia) by using DGGE analysis followed by cloning and sequencing of the dominant rDNA bands. Of the 17 unique sequences obtained, database queries showed only four strains that had been described previously as phyllosphere bacteria. Five of the 17 sequences had 16S similarities lower than 90% to database entries, suggesting that they represent previously undescribed species. In addition, three fungal species were also identified. Very different 16S rDNA DGGE banding profiles were obtained when replicate cv. Valencia leaf samples were cultured in BIOLOG EcoPlates for 4.5 days. All of these rDNA sequences had 97–100% similarity to those of known phyllosphere bacteria, but only two of them matched those identified by the culture independent DGGE analysis. Like other studied ecosystems, microbial phyllosphere communities therefore are more complex than previously thought, based on conventional culture-based methods.
Resumo:
A method for isolating and cloning mRNA populations from individual cells in living, intact plant tissues is described. The contents of individual cells were aspirated into micropipette tips filled with RNA extraction buffer. The mRNA from these cells was purified by binding to oligo(dT)-linked magnetic beads and amplified on the beads using reverse transcription and PCR. The cell-specific nature of the isolated mRNA was verified by creating cDNA libraries from individual tomato leaf epidermal and guard cell mRNA preparations. In testing the reproducibility of the method, we discovered an inherent limitation of PCR amplification from small amounts of any complex template. This phenomenon, which we have termed the "Monte Carlo" effect, is created by small and random differences in amplification efficiency between individual templates in an amplifying cDNA population. The Monte Carlo effect is dependent upon template concentration: the lower the abundance of any template, the less likely its true abundance will be reflected in the amplified library. Quantitative assessment of the Monte Carlo effect revealed that only rare mRNAs (< or = 0.04% of polyadenylylated mRNA) exhibited significant variation in amplification at the single-cell level. The cDNA cloning approach we describe should be useful for a broad range of cell-specific biological applications.