3 resultados para planar waveguides
em National Center for Biotechnology Information - NCBI
Resumo:
Streaming potentials across cloned epithelial Na+ channels (ENaC) incorporated into planar lipid bilayers were measured. We found that the establishment of an osmotic pressure gradient (Δπ) across a channel-containing membrane mimicked the activation effects of a hydrostatic pressure differential (ΔP) on αβγ-rENaC, although with a quantitative difference in the magnitude of the driving forces. Moreover, the imposition of a Δπ negates channel activation by ΔP when the Δπ was directed against ΔP. A streaming potential of 2.0 ± 0.7 mV was measured across αβγ-rat ENaC (rENaC)-containing bilayers at 100 mM symmetrical [Na+] in the presence of a 2 Osmol/kg sucrose gradient. Assuming single file movement of ions and water within the conduction pathway, we conclude that between two and three water molecules are translocated together with a single Na+ ion. A minimal effective pore diameter of 3 Å that could accommodate two water molecules even in single file is in contrast with the 2-Å diameter predicted from the selectivity properties of αβγ-rENaC. The fact that activation of αβγ-rENaC by ΔP can be reproduced by the imposition of Δπ suggests that water movement through the channel is also an important determinant of channel activity.
Resumo:
A small (96-aa) protein, virus protein R (Vpr), of human immunodeficiency virus type 1 contains one hydrophobic segment that could form a membrane-spanning helix. Recombinant Vpr, expressed in Escherichia coli and purified by affinity chromatography, formed ion channels in planar lipid bilayers when it was added to the cis chamber and when the trans chamber was held at a negative potential. The channels were more permeable to Na+ than to Cl- ions and were inhibited when the trans potential was made positive. Similar channel activity was caused by Vpr that had a truncated C terminus, but the potential dependence of channel activity was no longer seen. Antibody raised to a peptide mimicking part of the C terminus of Vpr (AbC) inhibited channel activity when added to the trans chamber but had no effect when added to the cis chamber. Antibody to the N terminus of Vpr (AbN) increased channel activity when added to the cis chamber but had no effect when added to the trans chamber. The effects of potential and antibodies on channel activity are consistent with a model in which the positive C-terminal end of dipolar Vpr is induced to traverse the bilayer membrane when the opposite (trans) side of the membrane is at a negative potential. The C terminus of Vpr would then be available for interaction with AbC in the trans chamber, and the N terminus would be available for interaction with AbN in the cis chamber. The ability of Vpr to form ion channels in vitro suggests that channel formation by Vpr in vivo is possible and may be important in the life cycle of human immunodeficiency virus type 1 and/or may cause changes in cells that contribute to AIDS-related pathologies.
Resumo:
Knowing how motile bacteria move near and along a solid surface is crucial to understanding such diverse phenomena as the migration of infectious bacteria along a catheter, biofilm growth, and the movement of bacteria through the pore spaces of saturated soil, a critical step in the in situ bioremediation of contaminated aquifers. In this study, a tracking microscope is used to record the three-dimensional motion of Escherichia coli near a planar glass surface. Data from the tracking microscope are analyzed to quantify the effects of bacteria-surface interactions on the swimming behavior of bacteria. The speed of cells approaching the surface is found to decrease in agreement with the mathematical model of Ramia et al. [Ramia, M., Tullock, D. L. & Phan-Tien, N. (1993) Biophys J. 65,755-778], which represents the bacteria as spheres with a single polar flagellum rotating at a constant rate. The tendency of cells to swim adjacent to the surface is shown in computer-generated reproductions of cell traces. The attractive interaction potential between the cells and the solid surface is offered as one of several possible explanations for this tendency.