7 resultados para place of death

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Death-associated protein kinase (DAP-kinase) is a Ca+2/calmodulin-regulated serine/threonine kinase with a multidomain structure that participates in apoptosis induced by a variety of signals. To identify regions in this protein that are critical for its proapoptotic activity, we performed a genetic screen on the basis of functional selection of short DAP-kinase-derived fragments that could protect cells from apoptosis by acting in a dominant-negative manner. We expressed a library of randomly fragmented DAP-kinase cDNA in HeLa cells and treated these cells with IFN-γ to induce apoptosis. Functional cDNA fragments were recovered from cells that survived the selection, and those in the sense orientation were examined further in a secondary screen for their ability to protect cells from DAP-kinase-dependent tumor necrosis factor-α-induced apoptosis. We isolated four biologically active peptides that mapped to the ankyrin repeats, the “linker” region, the death domain, and the C-terminal tail of DAP-kinase. Molecular modeling of the complete death domain provided a structural basis for the function of the death-domain-derived fragment by suggesting that the protective fragment constitutes a distinct substructure. The last fragment, spanning the C-terminal serine-rich tail, defined a new regulatory region. Ectopic expression of the tail peptide (17 amino acids) inhibited the function of DAP-kinase, whereas removal of this region from the complete protein caused enhancement of the killing activity, indicating that the C-terminal tail normally plays a negative regulatory role. Altogether, this unbiased screen highlighted functionally important regions in the protein and revealed an additional level of regulation of DAP-kinase apoptotic function that does not affect the catalytic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To establish whether fetal growth rate (as distinct from size at birth) is associated with mortality from ischaemic heart disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serine protease granzyme B, which is secreted by cytotoxic cells, is one of the major effectors of apoptosis in susceptible targets. To examine the apoptotic mechanism of granzyme B, we have analyzed its effect on purified proteins that are thought to be components of death pathways inherent to cells. We demonstrate that granzyme B processes interleukin 1beta-converting enzyme (ICE) and the ICE-related protease Yama (also known as CPP32 or apopain) by limited proteolysis. Processing of ICE does not lead to activation. However, processing by granzyme B leads directly to the activation of Yama, which is now able to bind inhibitors and cleave the substrate poly(ADP-ribose) polymerase whose proteolysis is a marker of apoptosis initiated by several other stimuli. Thus ICE-related proteases can be activated by serine proteases that possess the correct specificity. Activation of pro-Yama by granzyme B is within the physiologic range. Thus the cytotoxic effect of granzyme B can be explained by its activation of an endogenous protease component of a programmed cell death pathway.