7 resultados para pistil longevity

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senescence, the decline in survivorship and fertility with increasing age, is a near-universal property of organisms. Senescence and limited lifespan are thought to arise because weak natural selection late in life allows the accumulation of mutations with deleterious late-age effects that are either neutral (the mutation accumulation hypothesis) or beneficial (the antagonistic pleiotropy hypothesis) early in life. Analyses of Drosophila spontaneous mutations, patterns of segregating variation and covariation, and lines selected for late-age fertility have implicated both classes of mutation in the evolution of aging, but neither their relative contributions nor the properties of individual loci that cause aging in nature are known. To begin to dissect the multiple genetic causes of quantitative variation in lifespan, we have conducted a genome-wide screen for quantitative trait loci (QTLs) affecting lifespan that segregate among a panel of recombinant inbred lines using a dense molecular marker map. Five autosomal QTLs were mapped by composite interval mapping and by sequential multiple marker analysis. The QTLs had large sex-specific effects on lifespan and age-specific effects on survivorship and mortality and mapped to the same regions as candidate genes with fertility, cellular aging, stress resistance and male-specific effects. Late age-of-onset QTL effects are consistent with the mutation accumulation hypothesis for the evolution of senescence, and sex-specific QTL effects suggest a novel mechanism for maintaining genetic variation for lifespan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chloroplast gene rbcL encodes the large subunit of the CO2-fixing enzyme ribulose-bisphosphate carboxylase. In previous work a target for photo-accelerated degradation of Chlamydomonas reinhardtii rbcL transcripts in vivo was found to lie within the first 63 nucleotides, and a sequence element required for increasing the longevity of transcripts of rbcL-reporter genes was found to occur between nucleotides 170 and 350. Photo-accelerated degradation of rbcL transcripts has been found to require nucleotides 21 to 41. Transcript nucleotides lying between 329 and 334 and between 14 and 27 are essential for stabilizing transcripts in vivo; mutations in either region reduce the longevity of transcripts. It is postulated that the effectiveness of photo-accelerated endonuclease attacks on the nucleotide 21 to 41 region is reduced by physical blockage or distortion of the target sequence by interacting proteins that associate with nucleotides in the 14 to 27 and 329 to 334 regions of the transcripts. Both the nucleotide +329 to +334 stabilizing sequence of rbcL and a transcription enhancing sequence that lies between +126 and +170 encode well conserved (cyanobacteria through angiosperms) amino acid sequences; the evolution of expression control elements within the protein coding sequence of rbcL is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The folding of the extracellular serine protease, α-lytic protease (αLP; EC 3.4.21.12) reveals a novel mechanism for stability that appears to lead to a longer functional lifetime for the protease. For αLP, stability is based not on thermodynamics, but on kinetics. Whereas this has required the coevolution of a pro region to facilitate folding, the result has been the optimization of native-state properties independent of their consequences on thermodynamic stability. Structural and mutational data lead to a model for catalysis of folding in which the pro region binds to a conserved β-hairpin in the αLP C-terminal domain, stabilizing the folding transition state and the native state. The pro region is then proteolytically degraded, leaving the active αLP trapped in a metastable conformation. This metastability appears to be a consequence of pressure to evolve properties of the native state, including a large, highly cooperative barrier to unfolding, and extreme rigidity, that reduce susceptibility to proteolytic degradation. In a test of survival under highly proteolytic conditions, homologous mammalian proteases that have not evolved kinetic stability are much more rapidly degraded than αLP. Kinetic stability as a means to longevity is likely to be a mechanism conserved among the majority of extracellular bacterial pro-proteases and may emerge as a general strategy for intracellular eukaryotic proteases subject to harsh conditions as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental question in the basic biology of aging is whether there is a universal aging process. If indeed such a process exists, one would expect that it develops at a higher rate in short- versus long-lived species. We have quantitated pentosidine, a marker of glycoxidative stress in skin collagen from eight mammalian species as a function of age. A curvilinear increase was modeled for all species, and the rate of increase correlated inversely with maximum life-span. Dietary restriction, a potent intervention associated with increased life-span, markedly inhibited glycoxidation rate in the rodent. On the assumption that collagen turnover rate is primarily influenced by the crosslinking due to glycoxidation, these results suggest that there is a progressive age-related deterioration of the process that controls the collagen glycoxidation rate. Thus, the ability to withstand damage due to glycoxidation and the Maillard reaction may be under genetic control.