4 resultados para pi-pi interactions
em National Center for Biotechnology Information - NCBI
Resumo:
The cation-pi interaction is an important, general force for molecular recognition in biological receptors. Through the sidechains of aromatic amino acids, novel binding sites for cationic ligands such as acetylcholine can be constructed. We report here a number of calculations on prototypical cation-pi systems, emphasizing structures of relevance to biological receptors and prototypical heterocycles of the type often of importance in medicinal chemistry. Trends in the data can be rationalized using a relatively simple model that emphasizes the electrostatic component of the cation-pi interaction. In particular, plots of the electrostatic potential surfaces of the relevant aromatics provide useful guidelines for predicting cation-pi interactions in new systems.
Resumo:
Two-component regulatory systems require highly specific interactions between histidine kinase (transmitter) and response regulator (receiver) proteins. We have developed a novel genetic strategy that is based on tightly regulated synthesis of a given protein to identify domains and residues of an interacting protein that are critical for interactions between them. Using a reporter strain synthesizing the nonpartner kinase VanS under tight arabinose control and carrying a promoter-lacZ fusion activated by phospho-PhoB, we isolated altered recognition (AR) mutants of PhoB showing enhanced activation (phosphorylation) by VanS as arabinose-dependent Lac+ mutants. Changes in the PhoBAR mutants cluster in a “patch” near the proposed helix 4 of PhoB based on the CheY crystal structure (a homolog of the PhoB receiver domain) providing further evidence that helix 4 lies in the kinase-regulator interface. Based on the CheY structure, one mutant has an additional change in a region that may propagate a conformational change to helix 4. The overall genetic strategy described here may also be useful for studying interactions of other components of the vancomycin resistance and Pi signal transduction pathways, other two-component regulatory systems, and other interacting proteins. Conditionally replicative oriRR6Kγ attP “genome targeting” suicide plasmids carrying mutagenized phoB coding regions were integrated into the chromosome of a reporter strain to create mutant libraries; plasmids encoding mutant PhoB proteins were subsequently retrieved by P1-Int-Xis cloning. Finally, the use of similar genome targeting plasmids and P1-Int-Xis cloning should be generally useful for constructing genomic libraries from a wide array of organisms.
Resumo:
The replication initiator protein pi of plasmid R6K is known to interact with the seven iterons of the gamma origin/enhancer and activate distant replication origins alpha and beta (ori alpha and ori beta) by pi-mediated DNA looping. Here we show that pi protein specifically interacts in vitro with the host-encoded helicase DnaB. The site of interaction of pi on DnaB has been localized to a 37-aa-long region located between amino acids 151 and 189 of DnaB. The surface of pi that interacts with DnaB has been mapped to the N-terminal region of the initiator protein between residues 1 and 116. The results suggest that during initiation of replication, the replicative helicase DnaB is first recruited to the gamma enhancer by the pi protein. In a subsequent step, the helicase probably gets delivered from ori gamma to ori alpha and ori beta by pi-mediated DNA looping.
Resumo:
A 20-mer phosphorothioate oligonucleotide (AS1) was designed to hybridize to the message for the rat kidney sodium phosphate cotransporter NaPi-2 close to the translation initiation site. Single intravenous doses of this oligonucleotide were given to rats maintained on a low phosphorus diet to increase NaPi-2 expression. At 3 days after oligonucleotide infusion, rats receiving 2.5 micromol of AS1 exhibited a reduction in renal NaPi-2 to cyclophilin mRNA ratio by 40% +/- 17%, and rats receiving 7.5 micromol of AS1 exhibited a reduction in NaPi-2 to cyclophilin mRNA ratio by 46% +/- 21%. Reversed-sequence AS1 was without effect. The higher dose of 7.5 micromol of AS1 also reduced the rate of phosphate uptake into renal brush border membrane vesicles and the expression of NaPi-2 protein detected by Western blotting in these vesicles. Reversed sequence AS1 was again without effect on these parameters. These results suggest that systemically infused oligonucleotides can exert antisense effects in the renal proximal tubule.