3 resultados para phytohormone

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants, unlike other higher eukaryotes, possess all the necessary enzymatic equipment for de novo synthesis of methionine, an amino acid that supports additional roles than simply serving as a building block for protein synthesis. This is because methionine is the immediate precursor of S-adenosylmethionine (AdoMet), which plays numerous roles of being the major methyl-group donor in transmethylation reactions and an intermediate in the biosynthesis of polyamines and of the phytohormone ethylene. In addition, AdoMet has regulatory function in plants behaving as an allosteric activator of threonine synthase. Among the AdoMet-dependent reactions occurring in plants, methylation of cytosine residues in DNA has raised recent interest because impediment of this function alters plant morphology and induces homeotic alterations in flower organs. Also, AdoMet metabolism seems somehow implicated in plant growth via an as yet fully understood link with plant-growth hormones such as cytokinins and auxin and in plant pathogen interactions. Because of this central role in cellular metabolism, a precise knowledge of the biosynthetic pathways that are responsible for homeostatic regulation of methionine and AdoMet in plants has practical implications, particularly in herbicide design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allene oxide synthase (AOS) mediates the conversion of lipoxygenase-derived fatty acid hydroperoxides to unstable allene epoxides, which supply the precursors for the synthesis of the phytohormone jasmonic acid (JA). In this study the characterization of AOS gene expression in flax (Linum usitatissimum) is reported. AOS was constitutively expressed in different organs of flax plants. Additionally, AOS gene expression was enhanced after mechanical wounding in both the directly damaged leaves and in the systemic tissue located distal to the treated leaves. This wound-induced accumulation of AOS required the de novo biosynthesis of other unknown proteins involved in the signaling pathway modulating wound-induced AOS gene expression. Furthermore, the wound-induced AOS mRNA accumulation was correlated with the increase in the levels of JA. Both JA and its precursor, 12-oxo-phytodienoic acid, activated AOS gene expression in a dose-dependent manner. Thus, JA could activate its own biosynthetic pathway in flax leaves. Moreover, neither salicylic acid (SA) nor aspirin influenced AOS enzymatic activity. It is interesting that pretreatment with SA or aspirin inhibited wound-induced accumulation of AOS transcripts. These results suggest that a potent inhibition of JA biosynthetic capacity in leaves can be affected by SA or aspirin at the level of AOS gene expression.