7 resultados para phyto-insecticides

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cry proteins produced by Bacillus thuringiensis are selective biodegradable insecticides used increasingly in bacterial insecticides and transgenic plants as alternatives to synthetic chemical insecticides. However, the potential for development of resistance and cross-resistance in target insect populations to Cry proteins used alone or in combination threatens the more widespread use of this novel pest control technology. Here we show that high levels of resistance to CryIV proteins in larvae of the mosquito, Culex quinquefasciatus, can be suppressed or reduced markedly by combining these proteins with sublethal quantities of CytA, a cytolytic endotoxin of B. thuringiensis. Resistance at the LC95 level of 127-fold for a combination of three CryIV toxins (CryIVA, B, and D), resulting from 60 generations of continuous selection, was completely suppressed by combining sporulated powders of CytA in a 1:3 ratio with sporulated powders of a CryIVA, CryIVB, and CryIVD strain. Combining the CytA strain with a CryIVA and CryIVB strain also completely suppressed mosquito resistance of 217-fold to the latter toxins at the LC95 level, whereas combination of CytA with CryIVD reduced resistance in a CryIVD-selected mosquito strain from greater than 1,000-fold to less than 8-fold. The CytA/CryIV model provides a potential molecular genetic strategy for engineering resistance management for Cry proteins directly into bacterial insecticides and transgenic plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to organophosphorus (OP) insecticides is associated with decreased carboxylesterase activity in several insect species. It has been proposed that the resistance may be the result of a mutation in a carboxylesterase that simultaneously reduces its carboxylesterase activity and confers an OP hydrolase activity (the “mutant ali-esterase hypothesis”). In the sheep blowfly, Lucilia cuprina, the association is due to a change in a specific esterase isozyme, E3, which, in resistant flies, has a null phenotype on gels stained using standard carboxylesterase substrates. Here we show that an OP-resistant allele of the gene that encodes E3 differs at five amino acid replacement sites from a previously described OP-susceptible allele. Knowledge of the structure of a related enzyme (acetylcholinesterase) suggests that one of these substitutions (Gly137 → Asp) lies within the active site of the enzyme. The occurrence of this substitution is completely correlated with resistance across 15 isogenic strains. In vitro expression of two natural and two synthetic chimeric alleles shows that the Asp137 substitution alone is responsible for both the loss of E3’s carboxylesterase activity and the acquisition of a novel OP hydrolase activity. Modeling of Asp137 in the homologous position in acetylcholinesterase suggests that Asp137 may act as a base to orientate a water molecule in the appropriate position for hydrolysis of the phosphorylated enzyme intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and economical method to construct large synthetic genes can be used when routine resynthesis of genes is required. Chemically phosphorylated adjacent oligonucleotides of the gene to be synthesized are assembled and ligated on a single-stranded, partially homologous template derived from a wild-type gene (cryIC in our case) by a thermostable Pfu DNA ligase using repeated cycles of melting, annealing, and ligation. The resulting synthetic DNA strands are selectively amplified by PCR with short specific flanking primers that are complementary only to the new synthetic DNA. Optimized expression of the synthetic cryIC gene in alfalfa and tobacco results in the production of 0.01–0.2% of total soluble proteins as CryIC toxin and provides protection against the Egyptian cotton leafworm (Spodoptera littoralis) and the beet armyworm (Spodoptera exigua). To facilitate selection and breeding of Spodoptera-resistant plants, the cryIC gene was linked to a pat gene, conferring resistance to the herbicide BASTA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chrysanthemyl diphosphate synthase (CPPase) catalyzes the condensation of two molecules of dimethylallyl diphosphate to produce chrysanthemyl diphosphate (CPP), a monoterpene with a non-head-to-tail or irregular c1′-2-3 linkage between isoprenoid units. Irregular monoterpenes are common in Chrysanthemum cinerariaefolium and related members of the Asteraceae family. In C. cinerariaefolium, CPP is an intermediate in the biosynthesis of the pyrethrin ester insecticides. CPPase was purified from immature chrysanthemum flowers, and the N terminus of the protein was sequenced. A C. cinerariaefolium λ cDNA library was screened by using degenerate oligonucleotide probes based on the amino acid sequence to identify a CPPase clone that encoded a 45-kDa preprotein. The first 50 aa of the ORF constitute a putative plastidial targeting sequence. Recombinant CPPase bearing an N-terminal polyhistidine affinity tag in place of the targeting sequence was purified to homogeneity from an overproducing Escherichia coli strain by Ni2+ chromatography. Incubation of recombinant CPPase with dimethylallyl diphosphate produced CPP. The diphosphate ester was hydrolyzed by alkaline phosphatase, and the resulting monoterpene alcohol was analyzed by GC/MS to confirm its structure. The amino acid sequence of CPPase aligns closely with that of the chain elongation prenyltransferase farnesyl diphosphate synthase rather than squalene synthase or phytoene synthase, which catalyze c1′-2-3 cyclopropanation reactions similar to the CPPase reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycoinsecticides are being used for the control of many insect pests as an environmentally acceptable alternative to chemical insecticides. A key aim of much recent work has been to increase the speed of kill and so improve commercial efficacy of these biocontrol agents. This might he achieved by adding insecticidal genes to the fungus, an approach considered to have enormous potential for the improvement of biological pesticides. We report here the development of a genetically improved entomopathogenic fungus. Additional copies of the gene encoding a regulated cuticle-degrading protease (Pr1) from Metarhizium anisopliae were inserted into the genome of M. anisopliae such that Pr1 was constitutively overproduced in the hemolymph of Manduca sexta, activating the prophenoloxidase system. The combined toxic effects of Pr1 and the reaction products of phenoloxidase caused larvae challenged with the engineered fungus to exhibit a 25% reduction in time of death and reduced food consumption by 40% compared to infections by the wild-type fungus. In addition, infected insects were rapidly melanized, and the resulting cadavers were poor substrates for fungal sporulation. Thus, environmental persistence of the genetically engineered fungus is reduced, thereby providing biological containment.