2 resultados para phosphorylcholine-substituded chitosans

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitin, a linear polysaccharide composed of (1→4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose (GlcNAc) residues, and chitosan, the fully or partially N-acetylated, water-soluble derivative of chitin composed of (1→4)-linked GlcNAc and 2-amino-2-deoxy-β-d-glucopyranose (GlcN), have been proposed as elicitors of defense reactions in higher plants. We tested and compared the ability of purified (1→4)-linked oligomers of GlcNAc (tetramer to decamer) and of GlcN (pentamer and heptamer) and partially N-acetylated chitosans with degrees of acetylation (DA) of 1%, 15%, 35%, 49%, and 60% and average degrees of polymerization between 540 and 1100 to elicit phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities, lignin deposition, and microscopically and macroscopically visible necroses when injected into the intercellular spaces of healthy, nonwounded wheat (Triticum aestivum L.) leaves. Purified oligomers of (1→4)-linked GlcN were not active as elicitors, whereas purified oligomers of (1→4)-linked GlcNAc with a degree of polymerization ≥ 7 strongly elicited POD activities but not PAL activities. Partially N-acetylated, polymeric chitosans elicited both PAL and POD activities, and maximum elicitation was observed with chitosans of intermediate DAs. All chitosans but not the chitin oligomers induced the deposition of lignin, the appearance of necrotic cells exhibiting yellow autofluorescence under ultraviolet light, and macroscopically visible necroses; those with intermediate DAs were most active. These results suggest that different mechanisms are involved in the elicitation of POD activities by GlcNAc oligomers, and of PAL and POD activities by partially N-acetylated chitosan polymers and that both enzymes have to be activated for lignin biosynthesis and ensuing necrosis to occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immune system's ability to distinguish self and nonself is essential for both host defense against foreign agents and protection of self-antigens from autoimmune destruction. Such discrimination is complicated by extensive structural homology shared between foreign and self antigens. One hypothesis to explain the development of an autoimmune response is that some B cells activated by foreign antigen acquire, through somatic mutation, specificity for both the eliciting foreign antigen and self antigen. If such clones arise frequently, there must be a mechanism for their elimination. We have analyzed the extent of autoreactivity arising in a nonautoimmune host during the response to a foreign antigen. To overcome the process of apoptosis in primary B cells that might routinely eliminate autoreactive clones, we generated B-cell hybridomas from spleen cells of immunized mice by using a fusion partner constitutively expressing bcl-2. Multiple lines were obtained that recognize simultaneously the hapten phosphorylcholine and the self antigen double-stranded DNA. This dual specificity was not present early but was detected by day 10 after immunization. Some of these cross-reactive antibodies deposit in kidneys in a pattern similar to what is seen in autoimmune disease. These results demonstrate that autoantibodies arise at a high frequency as part of a response to foreign antigen. It has previously been shown that autoreactivity is regulated by central deletion; these data demonstrate a need for negative selection in peripheral lymphoid organs also, to regulate autoantibodies acquiring their self-specificity by somatic mutation.