28 resultados para phospholipase D
em National Center for Biotechnology Information - NCBI
Resumo:
Sequence analysis of a heat-stable protein necessary for the activation of ADP ribosylation factor-dependent phospholipase D (PLD) reveals that this protein has a structure highly homologous to the previously known GM2 ganglioside activator whose deficiency results in the AB-variant of GM2 gangliosidosis. The heat-stable activator protein indeed has the capacity to enhance enzymatic conversion of GM2 to GM3 ganglioside that is catalyzed by β-hexosaminidase A. Inversely, GM2 ganglioside activator purified separately from tissues as described earlier [Conzelmann, E. & Sandhoff, K. (1987) Methods Enzymol. 138, 792–815] stimulates ADP ribosylation factor-dependent PLD in a dose-dependent manner. At higher concentrations of ammonium sulfate, the PLD activator protein apparently substitutes for protein kinase C and phosphatidylinositol 4,5-bisphosphate, both of which are known as effective stimulators of the PLD reaction. The mechanism of action of the heat-stable PLD activator protein remains unknown.
Resumo:
Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such ‘bypass Sec14p’ mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in ‘bypass Sec14p’ mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for ‘bypass Sec14p’, and yeast operating under ‘bypass Sec14p’ conditions are ethanol-sensitive. These data suggest that PLD supports ‘bypass Sec14p’ by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.
Resumo:
Phospholipid signaling mediated by lipid-derived second messengers or biologically active lipids is still new and is not well established in plants. We recently have found that lysophosphatidylethanolamine (LPE), a naturally occurring lipid, retards senescence of leaves, flowers, and postharvest fruits. Phospholipase D (PLD) has been suggested as a key enzyme in mediating the degradation of membrane phospholipids during the early stages of plant senescence. Here we report that LPE inhibited the activity of partially purified cabbage PLD in a cell-free system in a highly specific manner. Inhibition of PLD by LPE was dose-dependent and increased with the length and unsaturation of the LPE acyl chain whereas individual molecular components of LPE such as ethanolamine and free fatty acid had no effect on PLD activity. Enzyme-kinetic analysis suggested noncompetitive inhibition of PLD by LPE. In comparison, the related lysophospholipids such as lysophosphatidylcholine, lysophosphatidylglycerol, and lysophosphotidylserine had no significant effect on PLD activity whereas PLD was stimulated by lysophosphatidic acid and inhibited by lysophosphatidylinositol. Membrane-associated and soluble PLD, extracted from cabbage and castor bean leaf tissues, also was inhibited by LPE. Consistent with acyl-specific inhibition of PLD by LPE, senescence of cranberry fruits as measured by ethylene production was more effectively inhibited according to the increasing acyl chain length and unsaturation of LPE. There are no known specific inhibitors of PLD in plants and animals. We demonstrate specific inhibitory regulation of PLD by a lysophospholipid.
Resumo:
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1–enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.
Resumo:
Three phospholipase Ds (PLDs; EC 3.1.4.4) have been cloned from Arabidopsis, and they exhibit two distinct types of activities: polyphosphoinositide-requiring PLDβ and PLDγ, and polyphosphoinositide-independent PLDα. In subcellular fractions of Arabidopsis leaves, PLDα and PLDγ were both present in the plasma membrane, intracellular membranes, mitochondria, and clathrin-coated vesicles, but their relative levels differed in these fractions. In addition, PLDγ was detected in the nuclear fraction. In contrast, PLDβ was not detectable in any of the subcellular fractions. PLDα activity was higher in the metabolically more active organs such as flowers, siliques, and roots than in dry seeds and mature leaves, whereas the polyphosphoinositide-dependent PLD activity was greater in older, senescing leaves than in other organs. PLDβ mRNA accumulated at a lower level than the PLDα and PLDγ transcripts in most organs, and the expression pattern of the PLDβ mRNA also differed from that of PLDα and PLDγ in different organs. Collectively, these data demonstrated that PLDα, PLDβ, and PLDγ have different patterns of subcellular distribution and tissue expression in Arabidopsis. The present study also provides evidence for the presence of an additional PLD that is structurally more closely related to PLDγ than to the other two PLDs.
Resumo:
Two monoclonal antibodies, anti-IL8R1 and anti-IL8R2, raised against both interleukin 8 receptors (IL-8R) of human neutrophils, IL-8R1 and IL-8R2, were used to study individual receptor functions after stimulation with IL-8, GRO alpha, or NAP-2. Efficacy and selectivity of the antibodies were tested in Jurkat cells transfected with cDNA coding for one or the other receptor. The binding of 125 I labeled IL-8 and IL-8-induced changes of the cytosolic free Ca2+ concentration were inhibited by anti-IL8RI in cells expressing IL-8R1 and by anti-IL8R2 in cells expressing IL-8R2. In human neutrophils, release of elastase was observed after stimulation with IL-8 or GRO alpha. The response to IL-8 was inhibited slightly by anti-IL8R1 and more substantially when both monoclonal antibodies were present, while the response to GRO alpha was inhibited by anti-IL8R2 but was not affected by anti-IL8R1. These results indicate that both IL-8 receptors can signal independently for granule enzyme release. Superoxide production, a measure of the respiratory burst, was obtained with increasing concentrations of IL-8 with maximum effects at 25 to 50 nM, but no response was observed upon challenge with GRO alpha or NAP-2 up to 1000 nM. The superoxide production induced by IL-8 was inhibited by anti-IL8R1, but was not affected by anti-IL8R2. Stimulation of neutrophils with IL-8, in contrast to GRO alpha or NAP-2, also elicited phospholipase D activity. The effect of IL-8 was again inhibited by anti-IL-8R1 but not by anti-IL8R2, indicating that this response, like the respiratory burst, was mediated by IL-8R1. Taken together, our results show that IL-8R1 and IL-8R2 are functionally different. Responses, such as cytosolic free Ca2+ changes and the release of granule enzymes, are mediated through both receptors, whereas the respiratory burst and the activation of phospholipase D depend exclusively on stimulation through IL-8R1.
Resumo:
Bovine kidney phospholipase D (PLD) was assayed by measuring the formation of phosphatidylethanol from added radioactive phosphatidylcholine (PtdCho) in the presence of ethanol, guanosine 5'-[gamma-thio]triphosphate, ammonium sulfate, and cytosol factor that contained small GTP-binding regulatory proteins. The PLD enzyme associated with particulate fractions was solubilized by deoxycholate and partially purified by chromatography on a heparin-Sepharose column. This PLD preferentially used PtdCho as substrate. After purification, the enzyme per se showed little or practically no activity but required an additional factor for the enzymatic reaction. This factor was extracted with chloroform/methanol directly from particulate fractions of various tissues, including kidney, liver, and brain, and identified as phosphatidylethanolamine (PtdEtn), although this phospholipid did not serve as a good substrate. Plasmalogen-rich PtdEtn, dioleoyl-PtdEtn, and L-alpha-palmitoyl-beta-linoleoyl-PtdEtn were effective, but dipalmitoyl-PtdEtn was inert. Sphingomyelin was 30% as active as PtdEtn. The results suggest that mammalian PLD reacts nearly selectively with PtdCho in the form of mixed micelles or membranes with other phospholipids, especially PtdEtn.
Resumo:
Phospholipid metabolism plays an important role in cellular regulation by generating second messengers for signal transduction. Many stimuli activate a phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine, producing phosphatidic acid and choline. Here we report that the yeast SP014 gene, which is essential for meiosis [Honigberg, S. M., Conicella, C. & Esposito, R. E. (1992) Genetics 130, 703-716], encodes a phospholipase D. SP014 RNA and protein activity are induced during late meiotic prophase, and the enzyme has properties similar to mammalian phosphatidylinositol 4,5-bisphosphate-regulated phospholipase D. Characterization of an unusual allele of SP014 defines regions of the protein important for enzyme catalysis and regulation. These results implicate phospholipase D signaling in regulating cellular differentiation.
Resumo:
Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and this dramatic action of ammonium sulfate is not simply due to such high ionic strength. Addition of ATP but not of nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-imido]diphosphate further enhanced the PLD activation approximately equal to 2- to 3-fold. This enhancement by ATP needed cytosol, implying a role of protein phosphorylation. A survey of PLD activity in rat tissues revealed that, unlike in previous observations reported thus far, PLD was most abundant in membrane fractions of kidney, spleen, and liver in this order, and the enzymatic activity in brain and lung was low.
Resumo:
ADP ribosylation factor (ARF) is a small guanosine triphosphate (GTP)-binding protein that regulates the binding of coat proteins to membranes and is required for several stages of vesicular transport. ARF also stimulates phospholipase D (PLD) activity, which can alter the lipid content of membranes by conversion of phospholipids into phosphatidic acid. Abundant PLD activity was found in Golgi-enriched membranes from several cell lines. Golgi PLD activity was greatly stimulated by ARF and GTP analogs and this stimulation could be inhibited by brefeldin A (BFA), a drug that blocks binding of ARF to Golgi membranes. Furthermore, in Golgi membranes from BFA-resistant PtK1 cells, basal PLD activity was high and not stimulated by exogenous ARF or GTP analogs. Thus, ARF activates PLD on the Golgi complex, suggesting a possible link between transport events and the underlying architecture of the lipid bilayer.
Resumo:
ADP-ribosylation factor (ARF) proteins in Saccharomyces cerevisiae are encoded by two genes, ARF1 and ARF2. The addition of the c-myc epitope at the C terminus of Arf1 resulted in a mutant (arf1-myc arf2) that supported vegetative growth and rescued cells from supersensitivity to fluoride, but homozygous diploids failed to sporulate. arf1-myc arf2 mutants completed both meiotic divisions but were unable to form spores. The SPO14 gene encodes a phospholipase D (PLD), whose activity is essential for mediating the formation of the prospore membrane, a prerequisite event for spore formation. Spo14 localized normally to the developing prospore membrane in arf1-myc arf2 mutants; however, the synthesis of the membrane was attenuated. This was not a consequence of reduced PLD catalytic activity, because the enzymatic activity of Spo14 was unaffected in meiotic arf1-myc arf2 mutants. Although potent activators of mammalian PLD1, Arf1 proteins did not influence the catalytic activities of either Spo14 or ScPld2, a second yeast PLD. These results demonstrate that ARF1 is required for sporulation, and the mitotic and meiotic functions of Arf proteins are not mediated by the activation of any known yeast PLD activities. The implications of these results are discussed with respect to current models of Arf signaling.
Resumo:
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.
Resumo:
The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.
Resumo:
Arabinogalactan proteins (AGPs) are proteoglycans of higher plants, which are implicated in growth and development. We recently have shown that two AGPs, NaAGP1 (from Nicotiana alata styles) and PcAGP1 (from Pyrus communis cell suspension culture), are modified by the addition of a glycosylphosphatidylinositol (GPI) anchor. However, paradoxically, both AGPs were buffer soluble rather than membrane associated. We now show that pear suspension cultured cells also contain membrane-bound GPI-anchored AGPs. This GPI anchor has the minimal core oligosaccharide structure, d-Manα(1–2)-d-Manα(1–6)-d-Manα(1–4)-d-GlcN-inositol, which is consistent with those found in animals, protozoa, and yeast, but with a partial β(1–4)-galactosyl substitution of the 6-linked Man residue, and has a phosphoceramide lipid composed primarily of phytosphingosine and tetracosanoic acid. The secreted form of PcAGP1 contains a truncated GPI lacking the phosphoceramide moiety, suggesting that it is released from the membrane by the action of a phospholipase D. The implications of these findings are discussed in relation to the potential mechanisms by which GPI-anchored AGPs may be involved in signal transduction pathways.