10 resultados para pharmacological activity
em National Center for Biotechnology Information - NCBI
Resumo:
Human deoxyribonucleoside kinases are required for the pharmacological activity of several clinically important anticancer and antiviral nucleoside analogs. Human deoxycytidine kinase and thymidine kinase 1 are described as cytosolic enzymes in the literature, whereas human deoxyguanosine kinase and thymidine kinase 2 are believed to be located in the mitochondria. We expressed the four human deoxyribonucleoside kinases as fusion proteins with the green fluorescent protein to study their intracellular locations in vivo. Our data showed that the human deoxycytidine kinase is located in the cell nucleus and the human deoxyguanosine kinase is located in the mitochondria. The fusion proteins between green fluorescent protein and thymidine kinases 1 and 2 were both predominantly located in the cytosol. Site-directed mutagenesis of a putative nuclear targeting signal, identified in the primary structure of deoxycytidine kinase, completely abolished nuclear import of the protein. Reconstitution of a deoxycytidine kinase-deficient cell line with the wild-type nuclear or the mutant cytosolic enzymes both restored sensitivity toward anticancer nucleoside analogs. This paper reports that a deoxyribonucleoside kinase is located in the cell nucleus and we discuss the implications for deoxyribonucleotide synthesis and phosphorylation of nucleoside analogs.
Resumo:
The enzymes cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin (PG) H2, the precursor of PGs and thromboxane. These lipid mediators play important roles in inflammation and pain and in normal physiological functions. While there are abundant data indicating that the inducible isoform, COX-2, is important in inflammation and pain, the constitutively expressed isoform, COX-1, has also been suggested to play a role in inflammatory processes. To address the latter question pharmacologically, we used a highly selective COX-1 inhibitor, SC-560 (COX-1 IC50 = 0.009 μM; COX-2 IC50 = 6.3 μM). SC-560 inhibited COX-1-derived platelet thromboxane B2, gastric PGE2, and dermal PGE2 production, indicating that it was orally active, but did not inhibit COX-2-derived PGs in the lipopolysaccharide-induced rat air pouch. Therapeutic or prophylactic administration of SC-560 in the rat carrageenan footpad model did not affect acute inflammation or hyperalgesia at doses that markedly inhibited in vivo COX-1 activity. By contrast, celecoxib, a selective COX-2 inhibitor, was anti-inflammatory and analgesic in this model. Paradoxically, both SC-560 and celecoxib reduced paw PGs to equivalent levels. Increased levels of PGs were found in the cerebrospinal fluid after carrageenan injection and were markedly reduced by celecoxib, but were not affected by SC-560. These results suggest that, in addition to the role of peripherally produced PGs, there is a critical, centrally mediated neurological component to inflammatory pain that is mediated at least in part by COX-2.
Resumo:
From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter.
Resumo:
Muscarinic acetylcholine receptors are members of the G protein-coupled receptor superfamily expressed in neurons, cardiomyocytes, smooth muscle, and a variety of epithelia. Five subtypes of muscarinic acetylcholine receptors have been discovered by molecular cloning, but their pharmacological similarities and frequent colocalization make it difficult to assign functional roles for individual subtypes in specific neuronal responses. We have used gene targeting by homologous recombination in embryonic stem cells to produce mice lacking the m1 receptor. These mice show no obvious behavioral or histological defects, and the m2, m3, and m4 receptors continue to be expressed in brain with no evidence of compensatory induction. However, the robust suppression of the M-current potassium channel activity evoked by muscarinic agonists in sympathetic ganglion neurons is completely lost in m1 mutant mice. In addition, both homozygous and heterozygous mutant mice are highly resistant to the seizures produced by systemic administration of the muscarinic agonist pilocarpine. Thus, the m1 receptor subtype mediates M current modulation in sympathetic neurons and induction of seizure activity in the pilocarpine model of epilepsy.
Resumo:
The saliva of blood-sucking arthropods contains powerful pharmacologically active substances and may be a vaccine target against some vector-borne diseases. Subtractive cloning combined with biochemical approaches was used to discover activities in the salivary glands of the hematophagous fly Lutzomyia longipalpis. Sequences of nine full-length cDNA clones were obtained, five of which are possibly associated with blood-meal acquisition, each having cDNA similarity to: (i) the bed bug Cimex lectularius apyrase, (ii) a 5′-nucleotidase/phosphodiesterase, (iii) a hyaluronidase, (iv) a protein containing a carbohydrate-recognition domain (CRD), and (v) a RGD-containing peptide with no significant matches to known proteins in the blast databases. Following these findings, we observed that the salivary apyrase activity of L. longipalpis is indeed similar to that of Cimex apyrase in its metal requirements. The predicted isoelectric point of the putative apyrase matches the value found for Lutzomyia salivary apyrase. A 5′-nucleotidase, as well as hyaluronidase activity, was found in the salivary glands, and the CRD-containing cDNA matches the N-terminal sequence of the HPLC-purified salivary anticlotting protein. A cDNA similar to α-amylase was discovered and salivary enzymatic activity demonstrated for the first time in a blood-sucking arthropod. Full-length clones were also found coding for three proteins of unknown function matching, respectively, the N-terminal sequence of an abundant salivary protein, having similarity to the CAP superfamily of proteins and the Drosophila yellow protein. Finally, two partial sequences are reported that match possible housekeeping genes. Subtractive cloning will considerably enhance efforts to unravel the salivary pharmacopeia of blood-sucking arthropods.
Resumo:
We discovered that a shift between the state of tumorigenicity and dormancy in human carcinoma (HEp3) is attained through regulation of the balance between two classical mitogen-activated protein kinase (MAPK)-signaling pathways, the mitogenic extracellular regulated kinase (ERK) and the apoptotic/growth suppressive stress-activated protein kinase 2 (p38MAPK), and that urokinase plasminogen activator receptor (uPAR) is an important regulator of these events. This is a novel function for uPAR whereby, when expressed at high level, it enters into frequent, activating interactions with the α5β1-integrin, which facilitates the formation of insoluble fibronectin (FN) fibrils. Activation of α5β1-integrin by uPAR generates persistently high level of active ERK necessary for tumor growth in vivo. Our results show that ERK activation is generated through a convergence of two pathways: a positive signal through uPAR-activated α5β1, which activates ERK, and a signal generated by the presence of FN fibrils that suppresses p38 activity. When fibrils are removed or their assembly is blocked, p38 activity increases. Low uPAR derivatives of HEp3 cells, which are growth arrested (dormant) in vivo, have a high p38/ERK activity ratio, but in spite of a similar level of α5β1-integrin, they do not assemble FN fibrils. However, when p38 activity is inhibited by pharmacological (SB203580) or genetic (dominant negative-p38) approaches, their ERK becomes activated, uPAR is overexpressed, α5β1-integrins are activated, and dormancy is interrupted. Restoration of these properties in dormant cells can be mimicked by a direct re-expression of uPAR through transfection with a uPAR-coding plasmid. We conclude that overexpression of uPAR and its interaction with the integrin are responsible for generating two feedback loops; one increases the ERK activity that feeds back by increasing the expression of uPAR. The second loop, through the presence of FN fibrils, suppresses p38 activity, further increasing ERK activity. Together these results indicate that uPAR and its interaction with the integrin should be considered important targets for induction of tumor dormancy.
Resumo:
The rat retina contains dopaminergic interplexiform cells that send processes to the outer plexiform layer where dopamine is released in a light-dependent manner. We report herein that physiologically relevant concentrations of dopamine inhibited ouabain-sensitive photoreceptor oxygen consumption in dark- and light-adapted rat retinas and inhibited Na+,K+-ATPase specific activity (EC 3.6.1.37) in a rat rod outer-inner segment preparation. Experiments with the selective D1 agonist fenoldopam or D2 agonist quinpirole and experiments with dopamine plus either the D1 antagonist SCH23390 or D2/D4 antagonist clozapine showed that the inhibition of oxygen consumption and enzyme activity were mediated by D2/D4-like receptors. The amphetamine-induced release of dopamine, monitored by the inhibition of oxygen consumption, was blocked by L-2-amino-4-phosphonobutyric acid and kynurenic acid. Pharmacological and biochemical experiments determined that the IC50 values of ouabain for the alpha1-low and alpha3-high ouabain affinity isozymes of photoreceptor Na+,K+-ATPase were approximately 10(-5) and approximately 10(-7) M, respectively, and that the D2/D4-like mediated inhibition of Na+,K+-ATPase was exclusively selective for the alpha3 isozyme. The dopamine-mediated inhibition of alpha3 first occurred at 5 nM, was maximal at 100 microM (-47%), had an IC50 value of 382 +/- 23 nM, and exhibited negative cooperativity (Hill coefficient, 0.27). Prior homogenization of the rod outer-inner segment completely prevented the long-lasting inhibition, suggesting that the effect was coupled to a second messenger. Although the physiological significance of our findings to photoreceptor function is unknown, we hypothesize that these results may have relevance for the temporal tuning properties of rods.
Resumo:
The activation of heat shock genes by diverse forms of environmental and physiological stress has been implicated in a number of human diseases, including ischemic damage, reperfusion injury, infection, neurodegeneration, and inflammation. The enhanced levels of heat shock proteins and molecular chaperones have broad cytoprotective effects against acute lethal exposures to stress. Here, we show that the potent antiinflammatory drug indomethacin activates the DNA-binding activity of human heat shock transcription factor 1 (HSF1). Perhaps relevant to its pharmacological use, indomethacin pretreatment lowers the temperature threshold of HSF1 activation, such that a complete heat shock response can be attained at temperatures that are by themselves insufficient. The synergistic effect of indomethacin and elevated temperature is biologically relevant and results in the protection of cells against exposure to cytotoxic conditions.
Resumo:
Screening a rat colon cDNA library for aldosterone-induced genes resulted in the molecular cloning of a cDNA whose corresponding mRNA is strongly induced in the colon by dexamethasone, aldosterone, and a low NaCl diet. A similar mRNA was detected in kidney papilla but not in brain, heart, or skeletal muscle. Xenopus laevis oocytes injected with cRNA synthesized from this clone, designated CHIF (channel-inducing factor), express a K(+)-specific channel activity. The biophysical, pharmacological, and regulatory characteristics of this channel are very similar to those reported before for IsK (minK). These include: slow (tau > 20 s) activation by membrane depolarization with a threshold potential above -50 mV, blockade by clofilium, inhibition by phorbol ester, and activation by 8-bromoadenosine 3',5'-cyclic monophosphate and high cytoplasmic Ca2+. The primary structure of this clone, however, shows no homology to IsK. Instead, CHIF exhibits > 50% similarity to two other short bitopic membrane proteins, phospholemman and the gamma subunit of Na+K(+)-ATPase. The data are consistent with the possibility that CHIF is a member of a family of transmembrane regulators capable of activating endogenous oocyte transport proteins.
Resumo:
We have studied the functional consequences of a mutation in the epithelial Na+ channel that causes a heritable form of salt-sensitive hypertension, Liddle disease. This mutation, identified in the original kindred described by Liddle, introduces a premature stop codon in the channel beta subunit, resulting in a deletion of almost all of the C terminus of the encoded protein. Coexpression of the mutant beta subunit with wild-type alpha and gamma subunits in Xenopus laevis oocytes resulted in an approximately 3-fold increase in the macroscopic amiloride-sensitive Na+ current (INa) compared with the wild-type channel. This change in INa reflected an increase in the overall channel activity characterized by a higher number of active channels in membrane patches. The truncation mutation in the beta subunit of epithelial Na+ channel did not alter the biophysical and pharmacological properties of the channel--including unitary conductance, ion selectivity, or sensitivity to amiloride block. These results provide direct physiological evidence that Liddle disease is related to constitutive channel hyperactivity in the cell membrane. Deletions of the C-terminal end of the beta and gamma subunits of rat epithelial Na+ channel were functionally equivalent in increasing INa, suggesting that the cytoplasmic domain of the gamma subunit might be another molecular target for mutations responsible for salt-sensitive forms of hypertension.