11 resultados para persistent navigation and mapping
em National Center for Biotechnology Information - NCBI
Resumo:
Oncogenic potential of human mycoplasmas was studied using cultured mouse embryo cells, C3H/10T1/2 (C3H). Mycoplasma fermentans and Mycoplasma penetrans, mycoplasmas found in unusually high frequencies among patients with AIDS, were examined. Instead of acute transformation, a multistage process in promotion and progression of malignant cell transformation with long latency was noted; after 6 passages (1 wk per passage) of persistent infection with M. fermentans, C3H cells exhibited phenotypic changes with malignant characteristics that became progressively more prominent with further prolonged infection. Up to at least the 11th passage, all malignant changes were reversible if mycoplasmas were eradicated by antibiotic treatment. Further persistent infection with the mycoplasmas until 18 passages resulted in an irreversible form of transformation that included the ability to form tumors in animals and high soft agar cloning efficiency. Whereas chromosomal loss and translocational changes in C3H cells infected by either mycoplasma during the reversible stage were not prominent, the onset of the irreversible phase of transformation coincided with such karyotypic alteration. Genetic instability--i.e., prominent chromosomal alteration of permanently transformed cells--was most likely caused by mutation of a gene(s) responsible for fidelity of DNA replication or repair. Once induced, chromosomal alterations continued to accumulate both in cultured cells and in animals without the continued presence of the transforming microbes. Mycoplasma-mediated multistage oncogenesis exhibited here shares many characteristics found in the development of human cancer.
Resumo:
Steroidogenic acute regulatory protein (StAR) appears to mediate the rapid increase in pregnenolone synthesis stimulated by tropic hormones. cDNAs encoding StAR were isolated from a human adrenal cortex library. Human StAR, coexpressed in COS-1 cells with cytochrome P450scc and adrenodoxin, increased pregnenolone synthesis > 4-fold. A major StAR transcript of 1.6 kb and less abundant transcripts of 4.4 and 7.5 kb were detected in ovary and testis. Kidney had a lower amount of the 1.6-kb message. StAR mRNA was not detected in other tissues including placenta. Treatment of granulosa cells with 8-bromo-adenosine 3',5'-cyclic monophosphate for 24 hr increased StAR mRNA 3-fold or more. The structural gene encoding StAR was mapped using somatic cell hybrid mapping panels to chromosome 8p. Fluorescence in situ hybridization placed the StAR locus in the region 8p11.2. A StAR pseudogene was mapped to chromosome 13. We conclude that StAR expression is restricted to tissues that carry out mitochondrial sterol oxidations subject to acute regulation by cAMP and that StAR mRNA levels are regulated by cAMP.
Resumo:
Objective: To determine the prevalence of asthma and chronic obstructive pulmonary disease in patients not known to have these disorders, who present in general practice with persistent cough, and to ascertain criteria to help general practitioners in diagnosis.
Resumo:
Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury.
Resumo:
Previous complementation and mapping of mutations that change the usual yellow color of the Zygomycete Phycomyces blakesleeanus to white or red led to the definition of two structural genes for carotene biosynthesis. We have cloned one of these genes, carRA, by taking advantage of its close linkage to the other, carB, responsible for phytoene dehydrogenase. The sequences of the wild type and six mutants have been established, compared with sequences in other organisms, and correlated with the mutant phenotypes. The carRA and carB coding sequences are separated by 1,381 untranslated nucleotides and are divergently transcribed. Gene carRA contains separate domains for two enzymes, lycopene cyclase and phytoene synthase, and regulates the overall activity of the pathway and its response to physical and chemical stimuli from the environment. The lycopene cyclase domain of carRA derived from a duplication of a gene from a common ancestor of fungi and Brevibacterium linens; the phytoene synthase domain is similar to the phytoene and squalene synthases of many organisms; but the regulatory functions appear to be specific to Phycomyces.
Resumo:
Leaf surfaces provide the ecologically relevant landscapes to those organisms that encounter or colonize the leaf surface. Leaf surface topography directly affects microhabitat availability for colonizing microbes, microhabitat quality and acceptability for insects, and the efficacy of agricultural spray applications. Prior detailed mechanistic studies that examined particular fungi-plant and pollinator-plant interactions have demonstrated the importance of plant surface topography or roughness in determining the outcome of the interactions. Until now, however, it has not been possible to measure accurately the topography--i.e., the three-dimensional structure--of such leaf surfaces or to record precise changes in patterns of leaf surface elevation over time. Using contact mode atomic force microscopy, we measured three-dimensional coordinates of upper leaf surfaces of Vaccinium macrocarpon (cranberry), a perennial plant, on leaves of two age classes. We then produced topographic maps of these leaf surfaces, which revealed striking differences between age classes of leaves: old leaves have much rougher surfaces than those of young leaves. Atomic force microscope measurements were analyzed by lag (1) autocorrelation estimates of leaf surfaces by age class. We suggest that the changes in topography result from removal of epicuticular lipids and that the changes in leaf surface topography influence phylloplane ecology. Visualizing and mapping leaf surfaces permit detailed investigations into leaf surface-mediated phenomena, improving our understanding of phylloplane interactions.
Resumo:
The identification of cDNA clones from genomic regions known to contain human genes is usually the rate-limiting factor in positional cloning strategies. We demonstrate here that human genes present on yeast artificial chromosomes (YACs) are transcribed in yeast host cells. We have used the arbitrarily primed RNA (RAP) fingerprinting method to identify human-specific, transcribed sequences from YACs located in the 13q12 chromosome region. By comparing the RAP fingerprints generated using defined, arbitrary primers from various fragmented YACs, megaYACs, and host yeast, we were able to identify and map 20 products transcribed from the human YAC inserts. This method, therefore, permits the simultaneous isolation and mapping of novel expressed sequences directly from whole YACs.
Resumo:
The Database of Interacting Proteins (DIP; http://dip.doe-mbi.ucla.edu) is a database that documents experimentally determined protein–protein interactions. Since January 2000 the number of protein–protein interactions in DIP has nearly tripled to 3472 and the number of proteins to 2659. New interactive tools have been developed to aid in the visualization, navigation and study of networks of protein interactions.
Resumo:
The mechanisms by which infants and children process pain should be viewed within the context of a developing sensory nervous system. The study of the neurophysiological properties and connectivity of sensory neurons in the developing spinal cord dorsal horn of the intact postnatal rat has shed light on the way in which the newborn central nervous system analyzes cutaneous innocuous and noxious stimuli. The receptive field properties and evoked activity of newborn dorsal horn cells to single repetitive and persistent innocuous and noxious inputs are developmentally regulated and reflect the maturation of excitatory transmission within the spinal cord. These changes will have an important influence on pain processing in the postnatal period.
Resumo:
We report the 1.8-A crystal structure of the CD11a I-domain with bound manganese ion. The CD11a I-domain contains binding sites for intercellular adhesion molecules 1 and 3 and can exist in both low- and high-affinity states. The metal-bound form reported here is likely to represent a high-affinity state. The CD11a I-domain structure reveals a strained hydrophobic ridge adjacent to the bound metal ion that may serve as a ligand-binding surface and is likely to rearrange in the absence of bound metal ion. The CD11a I-domain is homologous to domains found in von Willebrand factor, and mapping of mutations found in types 2a and 2b von Willebrand disease onto this structure allows consideration of the molecular basis of these forms of the disease.
Resumo:
Human WEE1 (WEE1Hu) was cloned on the basis of its ability to rescue wee1+ mutants in fission yeast [Igarashi, M., Nagata, A., Jinno, S., Suto, K. & Okayama, H. (1991) Nature (London) 353, 80-83]. Biochemical studies carried out in vitro with recombinant protein demonstrated that WEE1Hu encodes a tyrosine kinase of approximately 49 kDa that phosphorylates p34cdc2 on Tyr-15 [Parker, L. L. & Piwnica-Worms, H. (1992) Science 257, 1955-1957]. To study the regulation of WEE1Hu in human cells, two polyclonal antibodies to bacterially produced p49WEE1Hu were generated. In addition, a peptide antibody generated against amino acids 361-388 of p49WEE1Hu was also used. Unexpectantly, these antibodies recognized a protein with an apparent molecular mass of 95 kDa in HeLa cells, rather than one of 49 kDa. Immunoprecipitates of p95 phosphorylated p34cdc2 on Tyr-15, indicating that p95 is functionally related to p49WEEIHu, and mapping studies demonstrated that p95 is structurally related to p49WEE1Hu. In addition, the substrate specificity of p95 was more similar to that of fission yeast p107wee1 than to that of human p49WEE1. Finally, the kinase activity of p95 toward p34cdc2/cyclin B was severely impaired during mitosis. Taken together, these results indicate that the original WEE1Hu clone isolated in genetic screens encodes only the catalytic domain of human WEE1 and that the authentic human WEE1 protein has an apparent molecular mass of approximately 95 kDa.