2 resultados para path analysis

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) “plant-defense” response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Is the pathway of protein folding determined by the relative stability of folding intermediates, or by the relative height of the activation barriers leading to these intermediates? This is a fundamental question for resolving the Levinthal paradox, which stated that protein folding by a random search mechanism would require a time too long to be plausible. To answer this question, we have studied the guanidinium chloride (GdmCl)-induced folding/unfolding of staphylococcal nuclease [(SNase, formerly EC 3.1.4.7; now called microbial nuclease or endonuclease, EC 3.1.31.1] by stopped-flow circular dichroism (CD) and differential scanning microcalorimetry (DSC). The data show that while the equilibrium transition is a quasi-two-state process, kinetics in the 2-ms to 500-s time range are triphasic. Data support the sequential mechanism for SNase folding: U3 <--> U2 <--> U1 <--> N0, where U1, U2, and U3 are substates of the unfolded protein and N0 is the native state. Analysis of the relative population of the U1, U2, and U3 species in 2.0 M GdmCl gives delta-G values for the U3 --> U2 reaction of +0.1 kcal/mol and for the U2 --> U1 reaction of -0.49 kcal/mol. The delta-G value for the U1 --> N0 reaction is calculated to be -4.5 kcal/mol from DSC data. The activation energy, enthalpy, and entropy for each kinetic step are also determined. These results allow us to make the following four conclusions. (i) Although the U1, U2, and U3 states are nearly isoenergetic, no random walk occurs among them during the folding. The pathway of folding is unique and sequential. In other words, the relative stability of the folding intermediates does not dictate the folding pathway. Instead, the folding is a descent toward the global free-energy minimum of the native state via the least activation path in the vast energy landscape. Barrier avoidance leads the way, and barrier height limits the rate. Thus, the Levinthal paradox is not applicable to the protein-folding problem. (ii) The main folding reaction (U1 --> N0), in which the peptide chain acquires most of its free energy (via van der Waals' contacts, hydrogen bonding, and electrostatic interactions), is a highly concerted process. These energy-acquiring events take place in a single kinetic phase. (iii) U1 appears to be a compact unfolded species; the rate of conversion of U2 to U1 depends on the viscosity of solution. (iv) All four relaxation times reported here depend on GdmCl concentrations: it is likely that none involve the cis/trans isomerization of prolines. Finally, a mechanism is presented in which formation of sheet-like chain conformations and a hydrophobic condensation event precede the main-chain folding reaction.