6 resultados para passenger load
em National Center for Biotechnology Information - NCBI
Resumo:
The risk of disease associated with persistent virus infections such as HIV-I, hepatitis B and C, and human T-lymphotropic virus-I (HTLV-I) is strongly determined by the virus load. However, it is not known whether a persistent class I HLA-restricted antiviral cytotoxic T lymphocyte (CTL) response reduces viral load and is therefore beneficial or causes tissue damage and contributes to disease pathogenesis. HTLV-I-associated myelopathy (HAM/TSP) patients have a high virus load compared with asymptomatic HTLV-I carriers. We hypothesized that HLA alleles control HTLV-I provirus load and thus influence susceptibility to HAM/TSP. Here we show that, after infection with HTLV-I, the class I allele HLA-A*02 halves the odds of HAM/TSP (P < 0.0001), preventing 28% of potential cases of HAM/TSP. Furthermore, HLA-A*02+ healthy HTLV-I carriers have a proviral load one-third that (P = 0.014) of HLA-A*02− HTLV-I carriers. An association of HLA-DRB1*0101 with disease susceptibility also was identified, which doubled the odds of HAM/TSP in the absence of the protective effect of HLA-A*02. These data have implications for other persistent virus infections in which virus load is associated with prognosis and imply that an efficient antiviral CTL response can reduce virus load and so prevent disease in persistent virus infections.
Resumo:
Kinesin is a dimeric motor protein that transports organelles in a stepwise manner toward the plus-end of microtubules by converting the energy of ATP hydrolysis into mechanical work. External forces can influence the behavior of kinesin, and force-velocity curves have shown that the motor will slow down and eventually stall under opposing loads of ≈5 pN. Using an in vitro motility assay in conjunction with a high-resolution optical trapping microscope, we have examined the behavior of individual kinesin molecules under two previously unexplored loading regimes: super-stall loads (>5 pN) and forward (plus-end directed) loads. Whereas some theories of kinesin function predict a reversal of directionality under high loads, we found that kinesin does not walk backwards under loads of up to 13 pN, probably because of an irreversible transition in the mechanical cycle. We also found that this cycle can be significantly accelerated by forward loads under a wide range of ATP concentrations. Finally, we noted an increase in kinesin’s rate of dissociation from the microtubule with increasing load, which is consistent with a load dependent partitioning between two recently described kinetic pathways: a coordinated-head pathway (which leads to stepping) and an independent-head pathway (which is static).
Resumo:
Using an event-related functional MRI design, we explored the relative roles of dorsal and ventral prefrontal cortex (PFC) regions during specific components (Encoding, Delay, Response) of a working memory task under different memory-load conditions. In a group analysis, effects of increased memory load were observed only in dorsal PFC in the encoding period. Activity was lateralized to the right hemisphere in the high but not the low memory-load condition. Individual analyses revealed variability in activation patterns across subjects. Regression analyses indicated that one source of variability was subjects’ memory retrieval rate. It was observed that dorsal PFC plays a differentially greater role in information retrieval for slower subjects, possibly because of inefficient retrieval processes or a reduced quality of mnemonic representations. This study supports the idea that dorsal and ventral PFC play different roles in component processes of working memory.
Resumo:
Allostatic load (AL) has been proposed as a new conceptualization of cumulative biological burden exacted on the body through attempts to adapt to life's demands. Using a multisystem summary measure of AL, we evaluated its capacity to predict four categories of health outcomes, 7 years after a baseline survey of 1,189 men and women age 70–79. Higher baseline AL scores were associated with significantly increased risk for 7-year mortality as well as declines in cognitive and physical functioning and were marginally associated with incident cardiovascular disease events, independent of standard socio-demographic characteristics and baseline health status. The summary AL measure was based on 10 parameters of biological functioning, four of which are primary mediators in the cascade from perceived challenges to downstream health outcomes. Six of the components are secondary mediators reflecting primarily components of the metabolic syndrome (syndrome X). AL was a better predictor of mortality and decline in physical functioning than either the syndrome X or primary mediator components alone. The findings support the concept of AL as a measure of cumulative biological burden.
Resumo:
Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways.
Resumo:
The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.