3 resultados para paleozoic shale
em National Center for Biotechnology Information - NCBI
The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse.
Resumo:
Because of its prominent role in global biomass storage, land vegetation is the most obvious biota to be investigated for records of dramatic ecologic crisis in Earth history. There is accumulating evidence that, throughout the world, sedimentary organic matter preserved in latest Permian deposits is characterized by unparalleled abundances of fungal remains, irrespective of depositional environment (marine, lacustrine, fluviatile), floral provinciality, and climatic zonation. This fungal event can be considered to reflect excessive dieback of arboreous vegetation, effecting destabilization and subsequent collapse of terrestrial ecosystems with concomitant loss of standing biomass. Such a scenario is in harmony with predictions that the Permian-Triassic ecologic crisis was triggered by the effects of severe changes in atmospheric chemistry arising from the rapid eruption of the Siberian Traps flood basalts.
Resumo:
The progression of animal life from the paleozoic ocean to rivers and diverse econiches on the planet's surface, as well as the subsequent reinvasion of the ocean, involved many different stresses on ionic pattern, osmotic pressure, and volume of the extracellular fluid bathing body cells. The relatively constant ionic pattern of vertebrates reflects a genetic "set" of many regulatory mechanisms--particularly renal regulation. Renal regulation of ionic pattern when loss of fluid from the body is disproportionate relative to the extracellular fluid composition (e.g., gastric juice with vomiting and pancreatic secretion with diarrhea) makes manifest that a mechanism to produce a biologically relatively inactive extracellular anion HCO3- exists, whereas no comparable mechanism to produce a biologically inactive cation has evolved. Life in the ocean, which has three times the sodium concentration of extracellular fluid, involves quite different osmoregulatory stress to that in freshwater. Terrestrial life involves risk of desiccation and, in large areas of the planet, salt deficiency. Mechanisms integrated in the hypothalamus (the evolutionary ancient midbrain) control water retention and facilitate excretion of sodium, and also control the secretion of renin by the kidney. Over and above the multifactorial processes of excretion, hypothalamic sensors reacting to sodium concentration, as well as circumventricular organs sensors reacting to osmotic pressure and angiotensin II, subserve genesis of sodium hunger and thirst. These behaviors spectacularly augment the adaptive capacities of animals. Instinct (genotypic memory) and learning (phenotypic memory) are melded to give specific behavior apt to the metabolic status of the animal. The sensations, compelling emotions, and intentions generated by these vegetative systems focus the issue of the phylogenetic emergence of consciousness and whether primal awareness initially came from the interoreceptors and vegetative systems rather than the distance receptors.
Resumo:
The paleontological record of the lower and middle Paleozoic Appalachian foreland basin demonstrates an unprecedented level of ecological and morphological stability on geological time scales. Some 70-80% of fossil morphospecies within assemblages persist in similar relative abundances in coordinated packages lasting as long as 7 million years despite evidence for environmental change and biotic disturbances. These intervals of stability are separated by much shorter periods of ecological and evolutionary change. This pattern appears widespread in the fossil record. Existing concepts of the evolutionary process are unable to explain this uniquely paleontological observation of faunawide coordinated stasis. A principle of evolutionary stability that arises from the ecosystem is explored here. We propose that hierarchical ecosystem theory, when extended to geological time scales, can explain long-term paleoecological stability as the result of ecosystem organization in response to high-frequency disturbance. The accompanying stability of fossil morphologies results from "ecological locking," in which selection is seen as a high-rate response of populations that is hierarchically constrained by lower-rate ecological processes. When disturbance exceeds the capacity of the system, ecological crashes remove these higher-level constraints, and evolution is free to proceed at high rates of directional selection during the organization of a new stable ecological hierarchy.