16 resultados para p-Group
em National Center for Biotechnology Information - NCBI
Resumo:
Infection with Helicobacter pylori is associated with different human gastric diseases. Biochemical studies, in vitro adherence assays, and in vivo animal models revealed that epithelial attachment of H. pylori can be mediated by the blood-group antigen-binding adhesin (BabA) targeting human Lewisb surface epitopes. Studies with transgenic mice expressing the Lewisb epitope have shown that such attachment can alter disease outcome. In the current study, the presence of the babA2 gene encoding the adhesin was investigated in clinical isolates from a German population by using PCR and reverse transcription–PCR. A positive genotype was correlated to allelic variations in the genes encoding VacA and CagA and also to the prevalence of duodenal ulcer, distal gastric adenocarcinoma, mucosa-associated lymphoid tissue lymphoma, and antral gastritis. The presence of babA2 was significantly associated with duodenal ulcer (P = 0.0002) and adenocarcinoma (P = 0.033). In contrast, type 1 strains (vacAs1- and cagA-positive) were associated with only duodenal ulcer (P = 0.004) but not adenocarcinoma (P = 0.235). Genotype presence of babA2, vacAs1, and cagA (“triple-positive” strains) showed a highly significant correlation to the prevalence of ulcer (P = 0.000002) and adenocarcinoma (P = 0.014) and discriminated significantly better between disease outcome than did the current type 1 classification. These results indicate that the babA2 gene is of high clinical relevance and would be a useful marker to identify patients who are at higher risk for specific H. pylori-related diseases.
Resumo:
Three different stable lipoxin A4 (LXA4) analogs (i.e., 16-phenoxy-LXA4-Me, 15-cyclohexyl-LXA4-Me, and 15-R/S-methyl-LXA4-Me) were studied for their ability to modulate leukocyte-endothelial cell interactions in the rat mesenteric microvasculature. Superfusion of the rat mesentery with 50 μmol/liter NG-nitro-l-arginine methyl ester (l-NAME) caused a significant, time-dependent increase in leukocyte rolling (56 ± 8 cells/min; P < 0.01 vs. control) and leukocyte adherence (12.5 ± 1.2 cells/100 μm length of venule; P < 0.01 vs. control) after 120 min of superfusion. Concomitant superfusion of the rat mesentery with 10 nmol/liter of each of three lipoxin analogs consistently and markedly attenuated l-NAME-induced leukocyte rolling to 10 ± 4 (P < 0.01), 4 ± 1 (P < 0.01), and 32 ± 7 (P < 0.05) cells/min, and adherence to 4 ± 0.8 (P < 0.01), 1.1 ± 0.4 (P < 0.01), and 7 ± 0.7 (P < 0.05) cells/100 μm length of venule (16-phenoxy-LXA4-Me, 15-cyclohexyl-LXA4-Me, and 15-R/S- methyl-LXA4-Me, respectively). No alterations of systemic blood pressure or mesenteric venular shear rates were observed in any group. Immunohistochemical up-regulation of P-selectin expression on intestinal venular endothelium was significantly increased (P < 0.01) after exposure to l-NAME, and this was significantly attenuated by these lipoxin analogs (P < 0.01). Thus, in vivo superfusion of the rat mesentery with stable lipoxin analogs at 10 nmol/liter reduces l-NAME-induced leukocyte rolling and adherence in the mesenteric rat microvasculature by attenuating P-selectin expression. This anti-inflammatory mechanism may represent a novel and potent regulatory action of lipoxins on the immune system.
Resumo:
Cockayne syndrome (CS) is characterized by impaired physical and mental development. Two complementation groups, CSA and CSB, have been identified. Here we report that the CSB gene product enhances elongation by RNA polymerase II. CSB stimulated the rate of elongation on an undamaged template by a factor of about 3. A thymine-thymine cyclobutane dimer located in the template strand is known to be a strong block to transcription. Addition of CSB to the blocked polymerase resulted in addition of one nucleotide to the nascent transcript. Finally, addition of transcription factor IIS is known to cause polymerase blocked at a thymine-thymine cyclobutane dimer to digest its nascent transcript, and CSB counteracted this transcript shortening action of transcription factor IIS. Thus a deficiency in transcription elongation may contribute to the CS phenotype.
Resumo:
TGN38 is one of the few known resident integral membrane proteins of the trans-Golgi network (TGN). Since it cycles constitutively between the TGN and the plasma membrane, TGN38 is ideally suited as a model protein for the identification of post-Golgi trafficking motifs. Several studies, employing chimeric constructs to detect such motifs within the cytosolic domain of TGN38, have identified the sequence 333YQRL336 as an autonomous signal capable of localizing reporter proteins to the TGN. In addition, one group has found that an upstream serine residue, S331, may also play a role in TGN38 localization. However, the nature and degree of participation of S331 in the localization of TGN38 remain uncertain, and the effect has been studied in chimeric constructs only. Here we investigate the role of S331 in the context of full-length TGN38. Mutations that abolish the hydroxyl moiety at position 331 (A, D, and E) lead to missorting of endocytosed TGN38 to the lysosome. Conversely, mutation of S331 to T has little effect on the endocytic trafficking of TGN38. Together, these findings indicate that the S331 hydroxyl group has a direct or indirect effect on the ability of the cytosolic tail of TGN38 to interact with trafficking and/or sorting machinery at the level of the early endosome. In addition, mutation of S331 to either A or D results in increased levels of TGN38 at the cell surface. The results confirm that S331 plays a critical role in the intracellular trafficking of TGN38 and further reveal that TGN38 undergoes a signal-mediated trafficking step at the level of the endosome.
Resumo:
A number of aminoglycosides have been reported to interact and interfere with the function of various RNA molecules. Among these are 16S rRNA, the group I intron, and the hammerhead ribozymes. In this report we show that cleavage by RNase P RNA in the absence as well as in the presence of the RNase P protein is inhibited by several aminoglycosides. Among the ones we tested, neomycin B was found to be the strongest inhibitor with a Ki value in the micromolar range (35 μM). Studies of lead(II)-induced cleavage of RNase P RNA suggested that binding of neomycin B interfered with the binding of divalent metal ions to the RNA. Taken together, our findings suggest that aminoglycosides compete with Mg2+ ions for functionally important divalent metal ion binding sites. Thus, RNase P, which is an essential enzyme, is indeed a potential drug target that can be used to develop new drugs by using various aminoglycosides as lead compounds.
Resumo:
The visual pigment rhodopsin is a prototypical G protein-coupled receptor. These receptors have seven transmembrane helices and are activated by specific receptor–ligand interactions. Rhodopsin is unusual in that its retinal prosthetic group serves as an antagonist in the dark in the 11-cis conformation but is rapidly converted to an agonist on photochemical cis to trans isomerization. Receptor–ligand interactions in rhodopsin were studied in the light and dark by regenerating site-directed opsin mutants with synthetic retinal analogues. A progressive decrease in light-dependent transducin activity was observed when a mutant opsin with a replacement of Gly121 was regenerated with 11-cis-retinal analogues bearing progressively larger R groups (methyl, ethyl, propyl) at the C9 position of the polyene chain. A progressive decrease in light activity was also observed as a function of increasing size of the residue at position 121 for both the 11-cis-9-ethyl- and the 11-cis-9-propylretinal pigments. In contrast, a striking increase of receptor activity in the dark—i.e., without chromophore isomerization—was observed when the molecular volume at either position 121 of opsin or C9 of retinal was increased. The ability of bulky replacements at either position to hinder ligand incorporation and to activate rhodopsin in the dark suggests a direct interaction between these two sites. A molecular model of the retinal-binding site of rhodopsin is proposed that illustrates the specific interaction between Gly121 and the C9 methyl group of 11-cis-retinal. Steric interactions in this region of rhodopsin are consistent with the proposal that movement of transmembrane helices 3 and 6 is concomitant with receptor activation.
Resumo:
Objective: To determine whether the excess mortality observed in patients who received both levodopa and selegiline in a randomised trial could be explained by revised diagnosis of Parkinson’s disease, autonomic or cardiovascular effects, more rapid disease progression, or drug interactions.
Resumo:
The development of Alzheimer's disease (AD) later in life may be reflective of environmental factors operating over the course of a lifetime. Educational and occupational attainments have been found to be protective against the development of the disease but participation in activities has received little attention. In a case-control study, we collected questionnaire data about 26 nonoccupational activities from ages 20 to 60. Participants included 193 people with probable or possible AD and 358 healthy control-group members. Activity patterns for intellectual, passive, and physical activities were classified by using an adaptation of a published scale in terms of “diversity” (total number of activities), “intensity” (hours per month), and “percentage intensity” (percentage of total activity hours devoted to each activity category). The control group was more active during midlife than the case group was for all three activity categories, even after controlling for age, gender, income adequacy, and education. The odds ratio for AD in those performing less than the mean value of activities was 3.85 (95% confidence interval: 2.65–5.58, P < 0.001). The increase in time devoted to intellectual activities from early adulthood (20–39) to middle adulthood (40–60) was associated with a significant decrease in the probability of membership in the case group. We conclude that diversity of activities and intensity of intellectual activities were reduced in patients with AD as compared with the control group. These findings may be because inactivity is a risk factor for the disease or because inactivity is a reflection of very early subclinical effects of the disease, or both.
Resumo:
Bacteriophage lytic enzymes quickly destroy the cell wall of the host bacterium to release progeny phage. Because such lytic enzymes specifically kill the species in which they were produced, they may represent an effective way to control pathogenic bacteria without disturbing normal microflora. In this report, we studied a murein hydrolase from the streptococcal bacteriophage C1 termed lysin. This enzyme is specific for groups A, C, and E streptococci, with little or no activity toward several oral streptococci or other commensal organisms tested. Using purified lysin in vitro, we show that 1,000 units (10 ng) of enzyme is sufficient to sterilize a culture of ≈107 group A streptococci within 5 seconds. When a single dose of lysin (250 units) is first added to the oral cavity of mice, followed by 107 live group A streptococci, it provides protection from colonization (28.5% infected, n = 21) compared with controls without lysin (70.5% infected, n = 17) (P < 0.03). Furthermore, when lysin (500 units) was given orally to 9 heavily colonized mice, no detectable streptococci were observed 2 h after lysin treatment. In all, these studies show that lysin represents a unique murein hydrolase that has a rapid lethal effect both in vitro and in vivo on group A streptococci, without affecting other indigenous microorganisms analyzed. This general approach may be used to either eliminate or reduce streptococci from the upper respiratory mucosal epithelium of either carriers or infected individuals, thus reducing associated disease.
Resumo:
The predictability of genetic structure from social structure and differential mating success was tested in wild baboons. Baboon populations are subdivided into cohesive social groups that include multiple adults of both sexes. As in many mammals, males are the dispersing sex. Social structure and behavior successfully predicted molecular genetic measures of relatedness and variance in reproductive success. In the first quantitative test of the priority-of-access model among wild primates, the reproductive priority of dominant males was confirmed by molecular genetic analysis. However, the resultant high short-term variance in reproductive success did not translate into equally high long-term variance because male dominance status was unstable. An important consequence of high but unstable short-term variance is that age cohorts will tend to be paternal sibships and social groups will be genetically substructured by age.
Resumo:
We have studied RNase P RNA (M1 RNA) cleavage of model tRNA precursors that are cleaved at two independent positions. Here we present data demonstrating that cleavage at both sites depends on the 2'-OH immediately 5' of the respective cleavage site. However, we show that the 2-amino group of a guanosine at the cleavage site plays a significant role in cleavage at one of these sites but not at the other. These data suggest that these two cleavage sites are handled differently by the ribozyme. This theory is supported by our finding that the cross-linking pattern between Ml RNA and tRNA precursors carrying 4-thioU showed distinct differences, depending on the location of the 4-thioU relative to the respective cleavage site. These findings lead us to suggest that different cleavage sites are aligned differently in the active site, possibly as a result of different binding modes of a substrate to M1 RNA. We discuss a model in which the interaction between the 3'-terminal "RCCA" motif (first three residues interact) of a tRNA precursor and M1 RNA plays a significant role in this process.
Resumo:
Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity.
Resumo:
Ataxia-telangiectasia (AT) is an autosomal recessive human genetic disease characterized by immunological, neurological, and developmental defects and an increased risk of cancer. Cells from individuals with AT show sensitivity to ionizing radiation, elevated recombination, cell cycle abnormalities, and aberrant cytoskeletal organization. The molecular basis of the defect is unknown. A candidate AT gene (ATDC) was isolated on the basis of its ability to complement the ionizing radiation sensitivity of AT group D fibroblasts. Whether ATDC is mutated in any AT patients is not known. We have found that the ATDC protein physically interacts with the intermediate-filament protein vimentin, which is a protein kinase C substrate and colocalizing protein, and with an inhibitor of protein kinase C, hPKCI-1. Indirect immunofluorescence analysis of cultured cells transfected with a plasmid encoding an epitope-tagged ATDC protein localizes the protein to vimentin filaments. We suggest that the ATDC and hPKCI-1 proteins may be components of a signal transduction pathway that is induced by ionizing radiation and mediated by protein kinase C.
Resumo:
Domain 5 (D5) is a small hairpin structure within group II introns. A bimolecular assay system depends on binding by D5 to an intron substrate for self-splicing activity. In this study, mutations in D5 identify two among six nearly invariant nucleotides as being critical for 5' splice junction hydrolysis but unimportant for binding. A mutation at another site in D5 blocks binding. Thus, mutations can distinguish two D5 functions: substrate binding and catalysis. The secondary structure of D5 may resemble helix I formed by the U2 and U6 small nuclear RNAs in the eukaryotic spliceosome. Our results support a revision of the previously proposed correspondence between D5 and helix I on the basis of the critical trinucleotide 5'-AGC-3' present in both. We suggest that this trinucleotide plays a similar role in promoting the chemical reactions for both splicing systems.
Resumo:
Sequence analysis of the variable regions of the heavy and light chains of the anti-idiotypic antibody 6F9, which mimics the meningococcal group C capsular polysaccharide (MCP), was performed. The immunogenic site on 6F9 responsible for inducing an anti-MCP antibody response was determined by means of sequence and computer model analysis of these data. Complementarity-determining region 3 (CDR3) was found to be unique in that the sequence tract YRY was exposed on the surface. A synthetic peptide spanning the CDR3 domain was synthesized and complexed to proteosomes (meningococcal group B outer membrane protein). Immunizations of BALB/c mice with the peptide-proteosome complex resulted in a significant anti-MCP antibody response. Immunized mice were protected against infection with a lethal dose of Neisseria meningitidis serogroup C.