10 resultados para ozone-induced dissociation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of Arabidopsis thaliana to ozone results in the expression of a number of defense-related genes that are also induced during a hypersensitive response. A potential common link between the activation of defense gene expression during a hypersensitive response and by ozone treatment is the production of active oxygen species and the accumulation of hydrogen peroxide. Here we report that salicylic acid accumulation, which can be induced by hydrogen peroxide and is required for the expression of both a hypersensitive response and systemic acquired resistance, is also required for the induction of some, but not all, ozone-induced mRNAs examined. In addition, we show that ozone exposure triggers induced resistance of A. thaliana to infection with virulent phytopathogenic Pseudomonas syringae strains. Infection of transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of salicylic acid, or npr1 mutant plants, which are defective in the expression of systemic acquired resistance at a step downstream of salicylic acid, demonstrated that the signaling pathway activated during ozone-induced resistance overlaps with the systemic acquired resistance activation pathway and is salicylic acid dependent. Interestingly, plants expressing salicylate hydroxylase exhibited increased sensitivity to ozone exposure. These results demonstrate that ozone activates at least two distinct signaling pathways, including a salicylic acid dependent pathway previously shown to be associated with the activation of pathogen defense reactions, and that this latter pathway also induces a protective response to ozone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of βCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ozone is a major gaseous pollutant thought to contribute to forest decline. Although the physiological and morphological responses of forest trees to ozone have been well characterized, little is known about the molecular basis for these responses. Our studies compared the response to ozone of ozone-sensitive and ozone-tolerant clones of hybrid poplar (Populus maximowizii × Populus trichocarpa) at the physiological and molecular levels. Gas-exchange analyses demonstrated clear differences between the ozone-sensitive clone 388 and the ozone-tolerant clone 245. Although ozone induced a decrease in photosynthetic rate and stomatal conductance in both clones, the magnitude of the decrease in stomatal conductance was significantly greater in the ozone-tolerant clone. RNA-blot analysis established that ozone-induced mRNA levels for phenylalanine ammonia-lyase, O-methyltransferase, a pathogenesis-related protein, and a wound-inducible gene were significantly higher in the ozone-tolerant than in the ozone-sensitive plants. Wound- and pathogen-induced levels of these mRNAs were also higher in the ozone-tolerant compared with the ozone-sensitive plants. The different physiological and molecular responses to ozone exposure exhibited by clones 245 and 388 suggest that ozone tolerance involves the activation of salicylic-acid- and jasmonic-acid-mediated signaling pathways, which may be important in triggering defense responses against oxidative stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plants synthesize several classes of small (15- to 30-kD monomer) heat-shock proteins (sHSPs) in response to heat stress, including a nuclear-encoded, chloroplast-localized sHSP (HSP21). Cytosolic sHSPs exist as large oligomers (approximately 200–800 kD) composed solely or primarily of sHSPs. Phosphorylation of mammalian sHSPs causes oligomer dissociation, which appears to be important for regulation of sHSP function. We examined the native structure and phosphorylation of chloroplast HSP21 to understand this protein's basic properties and to compare it with cytosolic sHSPs. The apparent size of native HSP21 complexes was > 200 kD and they did not dissociate during heat stress. We found no evidence that HSP21 or the plant cytosolic sHSPs are phosphorylated in vivo. A partial HSP21 complex purified from heat-stressed pea (Pisum sativum L.) leaves contained no proteins other than HSP21. Mature recombinant pea and Arabidopsis thaliana HSP21 were expressed in Escherichia coli, and purified recombinant Arabidopsis HSP21 assembled into homo-oligomeric complexes with the same apparent molecular mass as HSP21 complexes observed in heat-stressed leaf tissue. We propose that the native, functional form of chloroplast HSP21 is a large, oligomeric complex containing nine or more HSP21 subunits, and that plant sHSPs are not regulated by phosphorylation-induced dissociation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Albeit anthracyclines are widely used in the treatment of solid tumors and leukemias, their mechanism of action has not been elucidated. The present study gives relevant information about the role of nonlamellar membrane structures in signaling pathways, which could explain how anthracyclines can exert their cytocidal action without entering the cell [Tritton, T. R. & Yee, G. (1982) Science 217, 248-250]. The anthracycline daunomycin reduced the formation of the nonlamellar hexagonal (HII) phase (i.e., the hexagonal phase propensity), stabilizing the bilayer structure of the plasma membrane by a direct interaction with membrane phospholipids. As a consequence, various cellular events involved in signal transduction, such as membrane fusion and membrane association of peripheral proteins [e.g., guanine nucleotide-binding regulatory proteins (G proteins and protein kinase C-alpha beta)], where nonlamellar structures (negative intrinsic monolayer curvature strain) are required, were altered by the presence of daunomycin. Functionally, daunomycin also impaired the expression of the high-affinity state of a G protein-coupled receptor (ternary complex for the alpha 2-adrenergic receptor) due to G-protein dissociation from the plasma membrane. In vivo, daunomycin also decreased the levels of membrane-associated G proteins and protein kinase C-alpha beta in the heart. The occurrence of such nonlamellar structures favors the association of these peripheral proteins with the plasma membrane and prevents daunomycin-induced dissociation. These results reveal an important role of the lipid component of the cell membrane in signal transduction and its alteration by anthracyclines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The phosphatidylinositol 3-kinase (PI3K)-signaling pathway has emerged as an important component of cytokine-mediated survival of hemopoietic cells. Recently, the protein kinase PKB/akt (referred to here as PKB) has been identified as a downstream target of PI3K necessary for survival. PKB has also been implicated in the phosphorylation of Bad, potentially linking the survival effects of cytokines with the Bcl-2 family. We have shown that granulocyte/macrophage colony-stimulating factor (GM-CSF) maintains survival in the absence of PI3K activity, and we now show that when PKB activation is also completely blocked, GM-CSF is still able to stimulate phosphorylation of Bad. Interleukin 3 (IL-3), on the other hand, requires PI3K for survival, and blocking PI3K partially inhibited Bad phosphorylation. IL-4, unique among the cytokines in that it lacks the ability to activate the p21ras–mitogen-activated protein kinase (MAPK) cascade, was found to activate PKB and promote cell survival, but it did not stimulate Bad phosphorylation. Finally, although our data suggest that the MAPK pathway is not required for inhibition of apoptosis, we provide evidence that phosphorylation of Bad may be occurring via a MAPK/ERK kinase (MEK)-dependent pathway. Together, these results demonstrate that although PI3K may contribute to phosphorylation of Bad in some instances, there is at least one other PI3K-independent pathway involved, possibly via activation of MEK. Our data also suggest that although phosphorylation of Bad may be one means by which cytokines can inhibit apoptosis, it may be neither sufficient nor necessary for the survival effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intact Escherichia coli ribosomes have been projected into the gas phase of a mass spectrometer by means of nanoflow electrospray techniques. Species with mass/charge ratios in excess of 20,000 were detected at the level of individual ions by using time-of-flight analysis. Once in the gas phase the stability of intact ribosomes was investigated and found to increase as a result of cross-linking ribosomal proteins to the rRNA. By lowering the Mg2+ concentration in solutions containing ribosomes the particles were found to dissociate into 30S and 50S subunits. The resolution of the charge states in the spectrum of the 30S subunit enabled its mass to be determined as 852,187 ± 3,918 Da, a value within 0.6% of that calculated from the individual proteins and the 16S RNA. Further dissociation into smaller macromolecular complexes and then individual proteins could be induced by subjecting the particles to increasingly energetic gas phase collisions. The ease with which proteins dissociated from the intact species was found to be related to their known interactions in the ribosome particle. The results show that emerging mass spectrometric techniques can be used to characterize a fully functional biological assembly as well as its isolated components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of BAX, without another death stimulus, proved sufficient to induce a common pathway of apoptosis. This included the activation of interleukin 1β-converting enzyme (ICE)-like proteases with cleavage of the endogenous substrates poly(ADP ribose) polymerase and D4-GDI (GDP dissociation inhibitor for the rho family), as well as the fluorogenic peptide acetyl-Asp-Glu-Val-Asp-aminotrifluoromethylcoumarin (DEVD-AFC). The inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) successfully blocked this protease activity and prevented FAS-induced death but not BAX-induced death. Blocking ICE-like protease activity prevented the cleavage of nuclear and cytosolic substrates and the DNA degradation that followed BAX induction. However, the fall in mitochondrial membrane potential, production of reactive oxygen species, cytoplasmic vacuolation, and plasma membrane permeability that are downstream of BAX still occurred. Thus, BAX-induced alterations in mitochondrial function and subsequent cell death do not apparently require the known ICE-like proteases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of photo-induced electrontransfer from high-potential iron-sulfur protein (HiPIP) to the photosynthetic reaction center (RC) of the purple phototroph Rhodoferarfermentans were studied. The rapid photooxidation of heme c-556 belonging to RC is followed, in the presence of HiPIP, by a slower reduction having a second-order rate constant of 4.8 x 10(7) M(-1) x s(-1). The limiting value of kobs at high HiPIP concentration is 95 s(-1). The amplitude of this slow process decreases with increasing HiPIP concentration. The amplitude of a faster phase, observed at 556 and 425 nm and involving heme c-556 reduction, increases proportionately. The rate constant of this fast phase, determined at 425 and 556 nm, is approximately 3 x 10(5) s(-1). This value is not dependent on HiPIP concentration, indicating that it is related to a first-order process. These observations are interpreted as evidence for the formation of a HiPIP-RC complex prior to the excitation flash, having a dissociation constant of -2.5 microM. The fast phase is absent at high ionic strength, indicating that the complex involves mainly electrostatic interactions. The ionic strength dependence of kobs for the slow phase yields a second-order rate constant at infinite ionic strength of 5.4 x 10(6) M(-1) x s(-1) and an electrostatic interaction energy of -2.1 kcal/mol (1 cal = 4.184 J). We conclude that Rhodoferar fermentans HiPIP is a very effective electron donor to the photosynthetic RC.