67 resultados para oxidative rearrangement

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-genome duplication approximately 108 years ago was proposed as an explanation for the many duplicated chromosomal regions in Saccharomyces cerevisiae. Here we have used computer simulations and analytic methods to estimate some parameters describing the evolution of the yeast genome after this duplication event. Computer simulation of a model in which 8% of the original genes were retained in duplicate after genome duplication, and 70–100 reciprocal translocations occurred between chromosomes, produced arrangements of duplicated chromosomal regions very similar to the map of real duplications in yeast. An analytical method produced an independent estimate of 84 map disruptions. These results imply that many smaller duplicated chromosomal regions exist in the yeast genome in addition to the 55 originally reported. We also examined the possibility of determining the original order of chromosomal blocks in the ancestral unduplicated genome, but this cannot be done without information from one or more additional species. If the genome sequence of one other species (such as Kluyveromyces lactis) were known it should be possible to identify 150–200 paired regions covering the whole yeast genome and to reconstruct approximately two-thirds of the original order of blocks of genes in yeast. Rates of interchromosome translocation in yeast and mammals appear similar despite their very different rates of homologous recombination per kilobase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instability of repetitive sequences, both in intronic sequences and within coding regions, has been demonstrated to be a hallmark of genomic instability in human cancer. Understanding how these mutational events arise may provide an opportunity for prevention or early intervention in cancer development. To study the source of this instability, we have identified a region of the β-lactamase gene that is tolerant to the insertion of fragments of exogenous DNA as large as 1,614 bp with minimal loss of enzyme activity, as determined by antibiotic resistance. Fragments inserted out-of-frame render Escherichia coli sensitive to antibiotic, and compensatory frameshift mutations that restore the reading frame of β-lactamase can be selected on the basis of antibiotic resistance. We have utilized this site to insert a synthetic microsatellite sequence within the β-lactamase gene and selected for mutations yielding frameshifts. This assay provides for detection of one frameshift mutation in a background of 106 wild-type sequences. Mismatch repair deficiency increased the observed frameshift frequency ≈300-fold. Exposure of plasmid containing microsatellite sequences to hydrogen peroxide resulted in frameshift mutations that were localized exclusively to the microsatellite sequences, whereas DNA damage by UV or N-methyl-N′-nitro-N-nitrosoguanidine did not result in enhanced mutagenesis. We postulate that in tumor cells, endogenous production of oxygen free radicals may be a major factor in promoting instability of microsatellite sequences. This β-lactamase assay may provide a sensitive methodology for the detection and quantitation of mutations associated with the development of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20–30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2.0-Å resolution x-ray crystal structure of a novel trimeric antibody fragment, a “triabody,” has been determined. The trimer is made up of polypeptides constructed in a manner identical to that previously described for some “diabodies”: a VL domain directly fused to the C terminus of a VH domain—i.e., without any linker sequence. The trimer has three Fv heads with the polypeptides arranged in a cyclic, head-to-tail fashion. For the particular structure reported here, the polypeptide was constructed with a VH domain from one antibody fused to the VL domain from an unrelated antibody giving rise to “combinatorial” Fvs upon formation of the trimer. The structure shows that the exchange of the VL domain from antibody B1-8, a Vλ domain, with the VL domain from antibody NQ11, a Vκ domain, leads to a dramatic conformational change in the VH CDR3 loop of antibody B1-8. The magnitude of this change is similar to the largest of the conformational changes observed in antibody fragments in response to antigen binding. Combinatorial pairing of VH and VL domains constitutes a major component of antibody diversity. Conformationally flexible antigen-binding sites capable of adapting to the specific CDR3 loop context created upon VH–VL pairing may be employed by the immune system to maximize the structural diversity of the immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms that cause aging are not well understood. The oxidative stress hypothesis proposes that the changes associated with aging are a consequence of random oxidative damage to biomolecules. We hypothesized that oxidation of specific proteins is critical in controlling the rate of the aging process. Utilizing an immunochemical probe for oxidatively modified proteins, we show that mitochondrial aconitase, an enzyme in the citric acid cycle, is a specific target during aging of the housefly. The oxidative damage detected immunochemically was paralleled by a loss of catalytic activity of aconitase, an enzyme activity that is critical in energy metabolism. Experimental manipulations which decrease aconitase activity should therefore cause a decrease in life-span. This expected decrease was observed when flies were exposed to hyperoxia, which oxidizes aconitase, and when they were given fluoroacetate, an inhibitor of aconitase. The identification of a specific target of oxidative damage during aging allows for the assessment of the physiological age of a specific individual and provides a method for the evaluation of treatments designed to affect the aging process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report evidence for proton-driven subunit rotation in membrane-bound FoF1–ATP synthase during oxidative phosphorylation. A βD380C/γC87 crosslinked hybrid F1 having epitope-tagged βD380C subunits (βflag) exclusively in the two noncrosslinked positions was bound to Fo in F1-depleted membranes. After reduction of the β–γ crosslink, a brief exposure to conditions for ATP synthesis followed by reoxidation resulted in a significant amount of βflag appearing in the β–γ crosslinked product. Such a reorientation of γC87 relative to the three β subunits can only occur through subunit rotation. Rotation was inhibited when proton transport through Fo was blocked or when ADP and Pi were omitted. These results establish FoF1 as the second example in nature where proton transport is coupled to subunit rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of [1-13C]- and [2,3,4,5-13C4]1-deoxy-d-xylulose into β-carotene, lutein, phytol, and sitosterol in a cell culture of Catharanthus roseus was analyzed by NMR spectroscopy. The labeling patterns of the isoprene precursors, isopentenyl pyrophosphate and dimethylallyl pyrophosphate, were obtained from the terpenes by a retrobiosynthetic approach. 13C Enrichment and 13C13C coupling patterns showed conclusively that 1-deoxy-d-xylulose and not mevalonate is the predominant isoprenoid precursor of phytol, β-carotene, and lutein. Label from 1-deoxyxylulose was also diverted to phytosterols to a minor extent (6% relative to carotene and phytol formation). The data demonstrate that the formation of isopentenyl pyrophosphate from pentulose occurs strictly by an intramolecular rearrangement process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress-activated protein kinases JNK and p38 mediate increased gene expression and are activated by environmental stresses and proinflammatory cytokines. Using an in vivo model in which oxidative stress is generated in the liver by intracellular metabolism, rapid protein–DNA complex formation on stress-activated AP-1 target genes was observed. Analysis of the induced binding complexes indicates that c-fos, c-jun, and ATF-2 were present, but also two additional jun family members, JunB and JunD. Activation of JNK precedes increased AP-1 DNA binding. Furthermore, JunB was shown to be a substrate for JNK, and phosphorylation requires the N-terminal activation domain. Unexpectedly, p38 activity was found to be constitutively active in the liver and was down-regulated through selective dephosphorylation following oxidative stress. One potential mechanism for p38 dephosphorylation is the rapid stress-induced activation of the phosphatase MKP-1, which has high affinity for phosphorylated p38 as a substrate. These data demonstrate that there are mechanisms for independent regulation of the JNK and p38 mitogen-activated protein kinase signal transduction pathways after metabolic oxidative stress in the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the important mechanisms of immunosuppression in the tumor-bearing status has been attributed to the down-modulation of the CD3 ζ chain and its associated signaling molecules in T cells. Thus, the mechanism of the disappearance of CD3ζ was investigated in tumor-bearing mice (TBM). The decrease of CD3ζ was observed both in the cell lysate and intact cells. Direct interaction of T cells with macrophages from TBM (TBM-macrophages) induced the decrease of CD3ζ, and depletion of macrophages rapidly restored the CD3ζ expression. We found that treatment of such macrophages with N-acetylcysteine, known as antioxidant compound, prevented the decrease of CD3ζ. Consistent with this result, the addition of oxidative reagents such as hydrogen peroxide and diamide induced the decrease of CD3ζ expression in T cells. Consequently, the loss of CD3ζ resulted in suppression of the antigen-specific T-cell response. These results demonstrate that oxidative stress by macrophages in tumor-bearing status induces abnormality of the T-cell receptor complex by cell interactions with T cells. Therefore, our findings suggest that oxidative stress contributes to the regulation of the expression and function of the T-cell receptor complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pto gene encodes a serine/threonine kinase that confers resistance in tomato to Pseudomonas syringae pv. tomato strains that express the avirulence gene avrPto. Partial characterization of the Pto signal transduction pathway and the availability of transgenic tomato lines (± Pto) make this an ideal system for exploring the molecular basis of disease resistance. In this paper, we test two transgenic tomato cell suspension cultures (±Pto) for production of H2O2 following independent challenge with two strains of P. syringae pv. tomato (±avrPto). Only when Pto and avrPto are present in the corresponding organisms are two distinct phases of the oxidative burst seen, a rapid first burst followed by a slower and more prolonged second burst. In the remaining three plant–pathogen interactions, we observe either no burst or only a first burst, indicating that the second burst is correlated with disease resistance. Further support for this observation comes from the finding that both resistant and susceptible tomato lines produce the critical second oxidative burst when challenged with P. syringae pv. tabaci, a nonhost pathogen that elicits a hypersensitive response on both tomato lines. The Pto kinase is not required, however, for the oxidative burst initiated by non-specific elicitors such as oligogalacturonides or osmotic stress. A model describing a possible role for the Pto kinase in the overall scheme of oxidative burst signaling is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast peptide-methionine sulfoxide reductase (MsrA) was overexpressed in a Saccharomyces cerevisiae null mutant of msrA by using a high-copy plasmid harboring the msrA gene and its promoter. The resulting strain had about 25-fold higher MsrA activity than its parent strain. When exposed to either hydrogen peroxide, paraquat, or 2,2′-azobis-(2-amidinopropane) dihydrochloride treatment, the MsrA overexpressed strain grew better, had lower free and protein-bound methionine sulfoxide and had a better survival rate under these conditions than did the msrA mutant and its parent strain. Substitution of methionine with methionine sulfoxide in a medium lacking hydrogen peroxide had little effect on the growth pattern, which suggests that the oxidation of free methionine in the growth medium was not the main cause of growth inhibition of the msrA mutant. Ultraviolet A radiation did not result in obvious differences in survival rates among the three strains. An enhanced resistance to hydrogen peroxide treatment was shown in human T lymphocyte cells (Molt-4) that were stably transfected with the bovine msrA and exposed to hydrogen peroxide. The survival rate of the transfected strain was much better than its parent strain when grown in the presence of hydrogen peroxide. These results support the proposition that the msrA gene is involved in the resistance of yeast and mammalian cells to oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of in vitro embryonic stem (ES) cell differentiation and targeted gene disruption has defined complex regulatory events underlying oxidative stress-induced cardiac apoptosis, a model of postischemic reperfusion injury of myocardium. ES cell-derived cardiac myocytes (ESCM) having targeted disruption of the MEKK1 gene were extremely sensitive, relative to wild-type ESCM, to hydrogen peroxide-induced apoptosis. In response to oxidative stress, MEKK1−/− ESCM failed to activate c-Jun kinase (JNK) but did activate p38 kinase similar to that observed in wild-type ESCM. The increased apoptosis was mediated through enhanced tumor necrosis factor α production, a response that was positively and negatively regulated by p38 and the MEKK1-JNK pathway, respectively. Thus, MEKK1 functions in the survival of cardiac myocytes by inhibiting the production of a proapoptotic cytokine. MEKK1 regulation of the JNK pathway is a critical response for the protection against oxidative stress-induced apoptosis in cardiac myocytes.