2 resultados para other properties
em National Center for Biotechnology Information - NCBI
Resumo:
(E)-α-Bisabolene synthase is one of two wound-inducible sesquiterpene synthases of grand fir (Abies grandis), and the olefin product of this cyclization reaction is considered to be the precursor in Abies species of todomatuic acid, juvabione, and related insect juvenile hormone mimics. A cDNA encoding (E)-α-bisabolene synthase was isolated from a wound-induced grand fir stem library by a PCR-based strategy and was functionally expressed in Escherichia coli and shown to produce (E)-α-bisabolene as the sole product from farnesyl diphosphate. The expressed synthase has a deduced size of 93.8 kDa and a pI of 5.03, exhibits other properties typical of sesquiterpene synthases, and resembles in sequence other terpenoid synthases with the exception of a large amino-terminal insertion corresponding to Pro81–Val296. Biosynthetically prepared (E)-α-[3H]bisabolene was converted to todomatuic acid in induced grand fir cells, and the time course of appearance of bisabolene synthase mRNA was shown by Northern hybridization to lag behind that of mRNAs responsible for production of induced oleoresin monoterpenes. These results suggest that induced (E)-α-bisabolene biosynthesis constitutes part of a defense response targeted to insect herbivores, and possibly fungal pathogens, that is distinct from induced oleoresin monoterpene production.
Resumo:
Restriction-modification (RM) systems are believed to have evolved to protect cells from foreign DNA. However, this hypothesis may not be sufficient to explain the diversity and specificity in sequence recognition, as well as other properties, of these systems. We report that the EcoRI restriction endonuclease-modification methylase (rm) gene pair stabilizes plasmids that carry it and that this stabilization is blocked by an RM of the same sequence specificity (EcoRI or its isoschizomer, Rsr I) but not by an RM of a different specificity (PaeR7I) on another plasmid. The PaeR7I rm likewise stabilizes plasmids, unless an rm gene pair with identical sequence specificity is present. Our analysis supports the following model for stabilization and incompatibility: the descendants of cells that have lost an rm gene pair expose the recognition sites in their chromosomes to lethal attack by any remaining restriction enzymes unless modification by another RM system of the same specificity protects these sites. Competition for specific sequences among these selfish genes may have generated the great diversity and specificity in sequence recognition among RM systems. Such altruistic suicide strategies, similar to those found in virus-infected cells, may have allowed selfish RM systems to spread by effectively competing with other selfish genes.