3 resultados para osteonectin

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/BM 40/osteonectin is a matricellular protein shown to function as a counteradhesive factor that induces cell rounding and as an inhibitor of cell proliferation. These activities have been defined in cell culture, in which interpretation has been complicated by the presence of endogenous SPARC. We therefore sought to determine whether cell shape and proliferation would be affected by the absence of SPARC. Mesangial cells, fibroblasts, and aortic smooth muscle cells were isolated from SPARC-null and age-matched, wild-type mice. In contrast to wild-type cells, SPARC-null mesangial cells exhibited a flat morphology and an altered actin cytoskeleton. In addition, vinculin-containing focal adhesions were distributed over the center of SPARC-null cells, whereas in wild-type cells, the number of focal adhesions was reduced, and these structures were restricted largely to the cell periphery. Although the SPARC-null fibroblasts did not display overt differences in cell morphology, the cells responded to exogenous recombinant SPARC by rounding up in a manner similar to that of wild-type fibroblasts. Thus, the expression of endogenous SPARC is not required for the response of cells to SPARC. Additionally, SPARC-null mesangial cells, fibroblasts, and smooth muscle cells proliferated faster than their respective wild-type counterparts. Null cells also showed a greater sensitivity to the inhibition of cell cycle progression by the addition of recombinant SPARC. The increased proliferation rate of SPARC-null cells appeared to be mediated, at least in part, by an increase in the cell cycle regulatory protein cyclin A. We conclude that the expression of SPARC influences the cellular architecture of mesangial cells and that SPARC plays a role in the regulation of cell cycle in mesangial cells, fibroblasts, and smooth muscle cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone-forming cells are organized in a multicellular network interconnected by gap junctions. In these cells, gap junctions are formed by connexin43 (Cx43) and connexin45 (Cx45). Cx43 gap junctions form pores that are more permeable to negatively charged dyes such as Lucifer yellow and calcein than are Cx45 pores. We studied whether altering gap junctional communication by manipulating the relative expression of Cx43 and Cx45 affects the osteoblast phenotype. Transfection of Cx45 in cells that express primarily Cx43 (ROS 17/2.8 and MC3T3-E1) decreased both dye transfer and expression of osteocalcin (OC) and bone sialoprotein (BSP), genes pivotal to bone matrix formation and calcification. Conversely, transfection of Cx43 into cells that express predominantly Cx45 (UMR 106–01) increased both cell coupling and expression of OC and BSP. Transient cotransfection of promoter–luciferase constructs and connexin expression vectors demonstrated that OC and BSP gene transcription was down-regulated by Cx45 cotransfection in ROS 17/2.8 and MC3T3-E1 cells, in association with a decrease in dye coupling. Conversely, cotransfection of Cx43 in UMR 106–01 cells up-regulated OC and BSP gene transcription. Activity of other less specific osteoblast promoters, such as osteopontin and osteonectin, was less sensitive to changes in gap junctional communication. Thus, altering gap junctional permeability by manipulating the expression of Cx43 and Cx45 in osteoblastic cells alters transcriptional activity of osteoblast-specific promoters, presumably via modulation of signals that can diffuse from cell to cell. A communicating intercellular network is required for the full elaboration of a differentiated osteoblastic phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.