2 resultados para orgaanisten anionien transportteripolypeptidi 1B1 (OATP 1B1)

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 4-hydroxy metabolite of 17 beta-estradiol (E2) has been implicated in the carcinogenicity of this hormone. Previous studies showed that aryl hydrocarbon-receptor agonists induced a cytochrome P450 that catalyzed the 4-hydroxylation of E2. This activity was associated with human P450 1B1. To determine the relationship of the human P450 1B1 gene product and E2 4-hydroxylation, the protein was expressed in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the 4- and 2-hydroxylation of E2 with Km values of 0.71 and 0.78 microM and turnover numbers of 1.39 and 0.27 nmol product min-1.nmol P450-1, respectively. Treatment of MCF-7 human breast cancer cells with the aryl hydrocarbon-receptor ligand indolo[3,2-b]carbazole resulted in a concentration-dependent increase in P450 1B1 and P450 1A1 mRNA levels, and caused increased rates of 2-, 4-, 6 alpha-, and 15 alpha-hydroxylation of E2. At an E2 concentration of 10 nM, the increased rates of 2- and 4-hydroxylation were approximately equal, emphasizing the significance of the low Km P450 1B1-component of E2 metabolism. These studies demonstrate that human P450 1B1 is a catalytically efficient E2 4-hydroxylase that is likely to participate in endocrine regulation and the toxicity of estrogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel multispecific organic anion transporting polypeptide (oatp2) has been isolated from rat brain. The cloned cDNA contains 3,640 bp. The coding region extends over 1,983 nucleotides, thus encoding a polypeptide of 661 amino acids. Oatp2 is homologous to other members of the oatp gene family of membrane transporters with 12 predicted transmembrane domains, five potential glycosylation, and six potential protein kinase C phosphorylation sites. In functional expression studies in Xenopus laevis oocytes, oatp2 mediated uptake of the bile acids taurocholate (Km ≈ 35 μM) and cholate (Km ≈ 46 μM), the estrogen conjugates 17β-estradiol-glucuronide (Km ≈ 3 μM) and estrone-3-sulfate (Km ≈ 11 μM), and the cardiac gylcosides ouabain (Km ≈ 470 μM) and digoxin (Km ≈ 0.24 μM). Although most of the tested compounds are common substrates of several oatp-related transporters, high-affinity uptake of digoxin is a unique feature of the newly cloned oatp2. On the basis of Northern blot analysis under high-stringency conditions, oatp2 is highly expressed in brain, liver, and kidney but not in heart, spleen, lung, skeletal muscle, and testes. These results provide further support for the overall significance of oatps as a new family of multispecific organic anion transporters. They indicate that oatp2 may play an especially important role in the brain accumulation and toxicity of digoxin and in the hepatobiliary and renal excretion of cardiac glycosides from the body.