5 resultados para optimal rate

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Divalent metal ions, such as Mg2+, are generally required for tertiary structure formation in RNA. Although the role of Mg2+ binding in RNA-folding equilibria has been studied extensively, little is known about the role of Mg2+ in RNA-folding kinetics. In this paper, we explore the effect of Mg2+ on the rate-limiting step in the kinetic folding pathway of the Tetrahymena ribozyme. Analysis of these data reveals the presence of a Mg2+-stabilized kinetic trap that slows folding at higher Mg2+ concentrations. Thus, the Tetrahymena ribozyme folds with an optimal rate at 2 mM Mg2+, just above the concentration required for stable structure formation. These results suggest that thermodynamic and kinetic folding of RNA are cooptimized at a Mg2+ concentration that is sufficient to stabilize the folded form but low enough to avoid kinetic traps and misfolding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low molecular weight, heat-resistant hepatotrophic factor in an extract from the bovine intestinal mucosa was purified and identified as ethanolamine by structural analyses. The mode of action of ethanolamine in vitro and in vivo coincided with that of the crude extract of the tissue, indicating that ethanolamine is the active component. Ethanolamine synergistically elevated the stimulation of DNA synthesis in hepatocytes in primary culture when added together with a growth factor, such as epidermal growth factor, with the ED50 being 20 μM, although it showed little stimulatory effect by itself. Contrary to these in vitro results, the intraperitoneal administration of ethanolamine hydrochloride (24 mg of ethanolamine per kg of body weight) enhanced hepatocyte proliferation in regenerating rat livers after two-thirds hepatectomy without the administration of any growth factors. In the regenerating liver, hepatocyte proliferation may be initiated by an endogenous growth factor, but the supply of ethanolamine in circulation may not be sufficient for optimal hepatocyte proliferation; thus, the exogenous administration of ethanolamine may further enhance hepatocyte proliferation. Ethanolamine in circulation may be a humoral hepatotrophic factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mutagenic effect of low linear energy transfer ionizing radiation is reduced for a given dose as the dose rate (DR) is reduced to a low level, a phenomenon known as the direct DR effect. Our reanalysis of published data shows that for both somatic and germ-line mutations there is an opposite, inverse DR effect, with reduction from low to very low DR, the overall dependence of induced mutations being parabolically related to DR, with a minimum in the range of 0.1 to 1.0 cGy/min (rule 1). This general pattern can be attributed to an optimal induction of error-free DNA repair in a DR region of minimal mutability (MMDR region). The diminished activation of repair at very low DRs may reflect a low ratio of induced (“signal”) to spontaneous background DNA damage (“noise”). Because two common DNA lesions, 8-oxoguanine and thymine glycol, were already known to activate repair in irradiated mammalian cells, we estimated how their rates of production are altered upon radiation exposure in the MMDR region. For these and other abundant lesions (abasic sites and single-strand breaks), the DNA damage rate increment in the MMDR region is in the range of 10% to 100% (rule 2). These estimates suggest a genetically programmed optimatization of response to radiation in the MMDR region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The c-Abl tyrosine kinase and the p53 tumor suppressor protein interact functionally and biochemically in cellular genotoxic stress response pathways and are implicated as downstream mediators of ATM (ataxia-telangiectasia mutated). This fact led us to study genetic interactions in vivo between c-Abl and p53 by examining the phenotype of mice and cells deficient in both proteins. c-Abl-null mice show high neonatal mortality and decreased B lymphocytes, whereas p53-null mice are prone to tumor development. Surprisingly, mice doubly deficient in both c-Abl and p53 are not viable, suggesting that c-Abl and p53 together contribute to an essential function required for normal development. Fibroblasts lacking both c-Abl and p53 were similar to fibroblasts deficient in p53 alone, showing loss of the G1/S cell-cycle checkpoint and similar clonogenic survival after ionizing radiation. Fibroblasts deficient in both c-Abl and p53 show reduced growth in culture, as manifested by reduction in the rate of proliferation, saturation density, and colony formation, compared with fibroblasts lacking p53 alone. This defect could be restored by reconstitution of c-Abl expression. Taken together, these results indicate that the ATM phenotype cannot be explained solely by loss of c-Abl and p53 and that c-Abl contributes to enhanced proliferation of p53-deficient cells. Inhibition of c-Abl function may be a therapeutic strategy to target p53-deficient cells selectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.