5 resultados para optimal prediction

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for computing the average solution of problems that are too complicated for adequate resolution, but where information about the statistics of the solution is available. The method involves computing average derivatives by interpolation based on linear regression, and an updating of a measure constrained by the available crude information. Examples are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively “nonessential” genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous analysis of the rules regarding how much more a female should invest in a litter of size C rather than producing a litter with one more offspring revealed an invariance relationship between litter size and the range of resources per offspring in any litter size. The rule is that the range of resources per offspring should be inversely proportional to litter size. Here we present a modification of this rule that relates litter size to the total resources devoted to reproduction at that litter size. The result is that the range of resources devoted to reproduction should be the same for all litter sizes. When parental phenotypes covary linearly with resources devoted to reproduction, then those traits should also show equal ranges within each litter size category (except for litters of one). We tested this prediction by examining the range in body size (=total length) of female mosquito fish (Gambusia hubbsi) at different litter sizes. Because resources devoted to reproduction may take many forms (e.g., nest defense), this prediction may have broad applicability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we estimate the statistical significance of structure prediction by threading. We introduce a single parameter ɛ that serves as a universal measure determining the probability that the best alignment is indeed a native-like analog. Parameter ɛ takes into account both length and composition of the query sequence and the number of decoys in threading simulation. It can be computed directly from the query sequence and potential of interactions, eliminating the need for sequence reshuffling and realignment. Although our theoretical analysis is general, here we compare its predictions with the results of gapless threading. Finally we estimate the number of decoys from which the native structure can be found by existing potentials of interactions. We discuss how this analysis can be extended to determine the optimal gap penalties for any sequence-structure alignment (threading) method, thus optimizing it to maximum possible performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-stranded regions in RNA secondary structure are important for RNA–RNA and RNA–protein interactions. We present a probability profile approach for the prediction of these regions based on a statistical algorithm for sampling RNA secondary structures. For the prediction of phylogenetically-determined single-stranded regions in secondary structures of representative RNA sequences, the probability profile offers substantial improvement over the minimum free energy structure. In designing antisense oligonucleotides, a practical problem is how to select a secondary structure for the target mRNA from the optimal structure(s) and many suboptimal structures with similar free energies. By summarizing the information from a statistical sample of probable secondary structures in a single plot, the probability profile not only presents a solution to this dilemma, but also reveals ‘well-determined’ single-stranded regions through the assignment of probabilities as measures of confidence in predictions. In antisense application to the rabbit β-globin mRNA, a significant correlation between hybridization potential predicted by the probability profile and the degree of inhibition of in vitro translation suggests that the probability profile approach is valuable for the identification of effective antisense target sites. Coupling computational design with DNA–RNA array technique provides a rational, efficient framework for antisense oligonucleotide screening. This framework has the potential for high-throughput applications to functional genomics and drug target validation.