2 resultados para operational
em National Center for Biotechnology Information - NCBI
Resumo:
In distinction to single-stranded anticodons built of G, C, A, and U bases, their presumable double-stranded precursors at the first three positions of the acceptor stem are composed almost invariably of G-C and C-G base pairs. Thus, the “second” operational RNA code responsible for correct aminoacylation seems to be a (G,C) code preceding the classic genetic code. Although historically rooted, the two codes were destined to diverge quite early. However, closer inspection revealed that two complementary catalytic domains of class I and class II aminoacyl-tRNA synthetases (aaRSs) multiplied by two, also complementary, G2-C71 and C2-G71 targets in tRNA acceptors, yield four (2 × 2) different modes of recognition. It appears therefore that the core four-column organization of the genetic code, associated with the most conservative central base of anticodons and codons, was in essence predetermined by these four recognition modes of the (G,C) operational code. The general conclusion follows that the genetic code per se looks like a “frozen accident” but only beyond the “2 × 2 = 4” scope. The four primordial modes of tRNA–aaRS recognition are amenable to direct experimental verification.
Resumo:
The genetic code is based on aminoacylation reactions where specific amino acids are attached to tRNAs bearing anticodon trinucleotides. However, the anticodon-independent specific aminoacylation of RNA minihelix substrates by bacterial and yeast tRNA synthetases suggested an operational RNA code for amino acids whereby specific RNA sequences/structures in tRNA acceptor stems correspond to specific amino acids. Because of the possible significance of the operational RNA code for the development of the genetic code, we investigated aminoacylation of synthetic RNA minihelices with a human enzyme to understand the sequences needed for that aminoacylation compared with those needed for a microbial system. We show here that the species-specific aminoacylation of glycine tRNAs is recapitulated by a species-specific aminoacylation of minihelices. Although the mammalian and Escherichia coli minihelices differ at 6 of 12 base pairs, two of the three nucleotides essential for aminoacylation by the E. coli enzyme are conserved in the mammalian minihelix. The two conserved nucleotides were shown to be also important for aminoacylation of the mammalian minihelix by the human enzyme. A simple interchange of the differing nucleotide enabled the human enzyme to now charge the bacterial substrate and not the mammalian minihelix. Conversely, this interchange made the bacterial enzyme specific for the mammalian substrate. Thus, the positional locations (if not the actual nucleotides) for the operational RNA code for glycine appear conserved from bacteria to mammals.