9 resultados para one-pass learning
em National Center for Biotechnology Information - NCBI
Resumo:
To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth.
Resumo:
FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum (http://133.11.149.55/). Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, we have produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these observations, it is expected that the database contains ∼1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs.
Resumo:
Many primates, including humans, live in complex hierarchical societies where social context and status affect daily life. Nevertheless, primate learning studies typically test single animals in limited laboratory settings where the important effects of social interactions and relationships cannot be studied. To investigate the impact of sociality on associative learning, we compared the individual performances of group-tested rhesus monkeys (Macaca mulatta) across various social contexts. We used a traditional discrimination paradigm that measures an animal’s ability to form associations between cues and the obtaining of food in choice situations; but we adapted the task for group testing. After training a 55-member colony to separate on command into two subgroups, composed of either high- or low-status families, we exposed animals to two color discrimination problems, one with all monkeys present (combined condition), the other in their “dominant” and “subordinate” cohorts (split condition). Next, we manipulated learning history by testing animals on the same problems, but with the social contexts reversed. Monkeys from dominant families excelled in all conditions, but subordinates performed well in the split condition only, regardless of learning history. Subordinate animals had learned the associations, but expressed their knowledge only when segregated from higher-ranking animals. Because aggressive behavior was rare, performance deficits probably reflected voluntary inhibition. This experimental evidence of rank-related, social modulation of performance calls for greater consideration of social factors when assessing learning and may also have relevance for the evaluation of human scholastic achievement.
Resumo:
In many song birds, males develop their songs as adults by imitating the songs of one or more tutors, memorized previously during a sensitive phase early in life. Previous work using two assays, the production of imitations by adult males and playback-induced calling by young birds during the sensitive phase for memorization, has shown that song birds can discriminate between their own and other species' songs. Herein I use both assays to show that male mountain white-crowned sparrows, Zonotrichia leucophrys oriantha, must learn to sing but have a genetic predisposition to memorize and learn the songs of their own subspecies. Playback tests to young naive birds before they even begin to sing reveal that birds give begging calls more in response to oriantha song than to songs of another species. After 10 days of tutoring with songs of either their own or another subspecies, birds continue to give stronger call responses to songs of their own subspecies, irrespective of whether they were tutored with them, and are more discriminating in distinguishing between different dialects of their own subspecies. The memory processes that facilitate recognition and discrimination of own-subspecies' song may also mediate the preferential imitation of song of a bird's own subspecies. Such perceptual biases could constrain the direction and rate of cultural evolution of learned songs.
Resumo:
Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.
Resumo:
Memory is one of the most fundamental mental processes. Neuroscientists study this process by using extremely diverse strategies. Two different approaches aimed at understanding learning and memory were introduced in this symposium. The first focuses on the roles played by synaptic plasticity, especially in long-term depression in the cerebellum in motor learning, and its regulatory mechanism. The second approach uses an elegant chick-quail transplantation system on defined brain regions to study how neural populations interact in development to form behaviorally important neural circuits and to elucidate neurobiological correlates of perceptual and motor predispositions.
Resumo:
One of the fascinating properties of the central nervous system is its ability to learn: the ability to alter its functional properties adaptively as a consequence of the interactions of an animal with the environment. The auditory localization pathway provides an opportunity to observe such adaptive changes and to study the cellular mechanisms that underlie them. The midbrain localization pathway creates a multimodal map of space that represents the nervous system's associations of auditory cues with locations in visual space. Various manipulations of auditory or visual experience, especially during early life, that change the relationship between auditory cues and locations in space lead to adaptive changes in auditory localization behavior and to corresponding changes in the functional and anatomical properties of this pathway. Traces of this early learning persist into adulthood, enabling adults to reacquire patterns of connectivity that were learned initially during the juvenile period.
Resumo:
Bird song, like human speech, is a learned vocal behavior that requires auditory feedback. Both as juveniles, while they learn to sing, and as adults, songbirds use auditory feedback to compare their own vocalizations with an internal model of a target song. Here we describe experiments that explore a role for the songbird anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit, in evaluating song feedback and modifying vocal output. First, neural recordings in anesthetized, juvenile birds show that single AFP neurons are specialized to process the song stimuli that are compared during sensorimotor learning. AFP neurons are tuned to both the bird's own song and the tutor song, even when these stimuli are manipulated to be very different from each other. Second, behavioral experiments in adult birds demonstrate that lesions to the AFP block the deterioration of song that normally follows deafening. This observation suggests that deafening results in an instructive signal, indicating a mismatch between feedback and the internal song model, and that the AFP is involved in generating or transmitting this instructive signal. Finally, neural recordings from behaving birds reveal robust singing-related activity in the AFP. This activity is likely to originate from premotor areas and could be modulated by auditory feedback of the bird's own voice. One possibility is that this activity represents an efference copy, predicting the sensory consequences of motor commands. Overall, these studies illustrate that sensory and motor processes are highly interrelated in this circuit devoted to vocal learning, as is true for brain areas involved in speech.
Resumo:
The song system of birds consists of several neural pathways. One of these, the anterior forebrain pathway, is necessary for the acquisition but not for the production of learned song in zebra finches. It has been shown that the anterior forebrain pathway sequentially connects the following nuclei: the high vocal center, area X of lobus parolfactorius, the medial portion of the dorsolateral thalamic nucleus, the lateral magnocellular nucleus of anterior neostriatum (IMAN), and the robust nucleus of the archistriatum (RA). We now show in zebra finches (Taeniopygia guttata) that IMAN cells that project to RA also project to area X, forming a feedback loop within the anterior forebrain pathway. The axonal endings of the IMAN projection into area X form cohesive and distinct domains. Small injections of tracer in subregions of area X backfill a spatially restricted subset of cells in IMAN, that, in turn, send projections to RA that are arranged in horizontal layers, which may correspond to the functional representation of vocal tract muscles demonstrated by others. We infer from our data that there is a myotopic representation throughout the anterior forebrain pathway. In addition, we suggest that the parcellation of area X into smaller domains by the projection from IMAN highlights a functional architecture within X, which might correspond to units of motor control, to the representation of acoustic features of song, or both.